早教吧作业答案频道 -->数学-->
如图,在三角形ABC中,角B=90度,角C=34度,角1=角2,角ADC=104度,如图,在三角形ABC中,角B=90度,角C=34度,角1=角2,角ADC=104度,求角CAE的度数.
题目详情
如图,在三角形ABC中,角B=90度,角C=34度,角1=角2,角ADC=104度,
如图,在三角形ABC中,角B=90度,角C=34度,角1=角2,角ADC=104度,求角CAE的度数.
如图,在三角形ABC中,角B=90度,角C=34度,角1=角2,角ADC=104度,求角CAE的度数.
▼优质解答
答案和解析
∵∠ADC+∠ADB=180°(平角性质)
∴∠ADB=180°-∠ADC=180°-104°=76°(等式的基本性质)
在△ABD中,
∵∠1+∠B+∠ADB=180°(三角形内角和为180°)
∴∠1=180°-∠B-∠ADB=180°-90°-76°=14°(等式的基本性质)
又∵∠1=∠2(已知),
∴∠1=∠2=14°
∴∠BAE=∠1+∠2=14°+14°=28°(等量代换)
在△ABC中,
∵∠BAC+∠B+∠C=180°(三角形内角和等于180°)
∴∠BAC=180°-∠B-∠C=180°-90°-34°=56°(等式的基本性质)
∴∠CAE=∠BAC-∠BAE=56°-28°=28°
手打字很累的,
∴∠ADB=180°-∠ADC=180°-104°=76°(等式的基本性质)
在△ABD中,
∵∠1+∠B+∠ADB=180°(三角形内角和为180°)
∴∠1=180°-∠B-∠ADB=180°-90°-76°=14°(等式的基本性质)
又∵∠1=∠2(已知),
∴∠1=∠2=14°
∴∠BAE=∠1+∠2=14°+14°=28°(等量代换)
在△ABC中,
∵∠BAC+∠B+∠C=180°(三角形内角和等于180°)
∴∠BAC=180°-∠B-∠C=180°-90°-34°=56°(等式的基本性质)
∴∠CAE=∠BAC-∠BAE=56°-28°=28°
手打字很累的,
看了 如图,在三角形ABC中,角B...的网友还看了以下:
在三角形ABC中 角A B C所对的边分别为a b c,若a=根号2 b=2 sinB+cosB= 2020-04-05 …
三角形ABC的三个顶点坐标为A(4,1),B(7,5),C(-4,7)求1:三角形ABC的内角A的 2020-05-13 …
下列命题正确的有1.若角1+角2=90度则角1与角2互为余角2.若角A+角B=180度,则角1与角 2020-06-04 …
几何法求轨迹已知定点A(0,2)及圆X^2+Y^2=4,过A作MA切圆于A,M为切线上一个动点,M 2020-06-08 …
△ABC中,角A、B、C对边分别是abc,满足2AB(向量)*AC(向量)=a^2-(b+c)^2 2020-06-28 …
1、解方程组:2x-3y=-1{(1/2)x-(1/3)y=-(3/2)2、平行四边形的周长为40 2020-07-03 …
下列条件中不能判三角形ABC为直角三角形的为()A角A-角B=角CB,角A:角B:角C=1:1:2 2020-07-10 …
三角形内角ABC所对边abc满足(a+b)^2+c^2=4,角c=60度,a+b 2020-07-13 …
平面几何问题在三角形ABC中,角A:角B:角C=4:2:1,角A,B,C的对边分别是a,b,c.求 2020-08-02 …
解三角形(高二)在三角形ABC中,角A,B,C中对应边分别是a,b,c若a=1,b=2,则角A点的取 2020-11-15 …