早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设点P是双曲线x2a2-y2b2=1(a>0,b>0)与圆x2+y2=a2+b2在第一象限的交点,其中F1,F2分别是双曲线的左、右焦点,若tan∠PF2F1=3,则双曲线的离心率为.

题目详情
设点P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)与圆x2+y2=a2+b2在第一象限的交点,其中F1,F2分别是双曲线的左、右焦点,若tan∠PF2F1=3,则双曲线的离心率为 ___ .
▼优质解答
答案和解析
作业帮 ∵圆x2+y2=a2+b2的半径r=
a2+b2
=c,
∴F1F2是圆的直径,
∴∠F1PF2=90°
依据双曲线的定义:|PF1|-|PF2|=2a,
又∵在Rt△F1PF2中,tan∠PF2F1=3,
即|PF1|=3|PF2|,
∴|PF1|=3a,|PF2|=a,
在直角三角形F1PF2
由(3a)2+a2=(2c)2
得e=
c2
a2
=
10
2

故答案为:
10
2