早教吧作业答案频道 -->其他-->
如图,以矩形ABCD的边CD为直径作⊙O,交矩形的对角线BD于点E,点F是BC边的中点,连接EF.(1)试判断直线EF与⊙O的位置关系,并说明理由;(2)若DC=2,EF=3,P是⊙O上除E、C两点外的任意一
题目详情
如图,以矩形ABCD的边CD为直径作⊙O,交矩形的对角线BD于点E,点F是BC边的中点,连接EF.(1)试判断直线EF与⊙O的位置关系,并说明理由;
(2)若DC=2,EF=
| 3 |
▼优质解答
答案和解析
(1)直线EF与⊙O相切.理由如下:
如图,连接OE、OF.
∵OD=OE,
∴∠1=∠D.
∵点F是BC的中点,点O是DC的中点,
∴OF∥BD,
∴∠3=∠D,∠2=∠1,
∴∠2=∠3.
∴在△EFO与△CFO中,
,
∴△EFO≌△CFO(SAS),
∴∠FEO=∠FCO=90°,
∴直线EF与⊙O相切.
(2)如图,连接DF.
∵由(1)知,△EFO≌△CFO,
∴FC=EF=
.
∴BC=2
在直角△FDC中,tan∠D=
=
,
∴∠D=60°.
∵点E、P、C、D四点共圆,
∴∠EPC+∠D=180°,
∴∠EPC=120°.
故填:120°.
(1)直线EF与⊙O相切.理由如下:如图,连接OE、OF.
∵OD=OE,
∴∠1=∠D.
∵点F是BC的中点,点O是DC的中点,
∴OF∥BD,
∴∠3=∠D,∠2=∠1,
∴∠2=∠3.
∴在△EFO与△CFO中,
|
∴△EFO≌△CFO(SAS),
∴∠FEO=∠FCO=90°,
∴直线EF与⊙O相切.
(2)如图,连接DF.
∵由(1)知,△EFO≌△CFO,
∴FC=EF=
| 3 |
∴BC=2
| 3 |
在直角△FDC中,tan∠D=
| BC |
| DC |
| 3 |
∴∠D=60°.
∵点E、P、C、D四点共圆,
∴∠EPC+∠D=180°,
∴∠EPC=120°.
故填:120°.
看了如图,以矩形ABCD的边CD为...的网友还看了以下:
圆锥曲线的已知椭圆C:x^2/2+y^2=1的右焦点为F,右准线为l,点A属于l,线段AF交C于点 2020-04-08 …
弧AEC是半径a的半圆,AC为直径,点E为弧AC的中点,点B和点C为线段AD的三...弧AEC是半 2020-07-04 …
已知O为坐标原点,F为抛物线C:y2=4x的焦点,P为抛物线C上一点,若|PF|=4,则△POF的 2020-07-14 …
阅读理若A、B、C为数轴上三点且点C在点A、点B之间,若点C到A的距离是点C到B的距离2倍,我们就 2020-07-14 …
如图,AB为O的直径,点C为AB延长线上一点,动点P从点A出发沿AC方向以lcm/s的速度运动,同 2020-07-25 …
在平面直角坐标系中,已知点A(-2,0),B(2,0),若在坐标轴上存在点C,使得AC+BC=m, 2020-07-30 …
设抛物线C:x2=2py(p>0)的焦点为F,A(x,y)(x≠0)是抛物线C上的一定点.(1)已 2020-07-31 …
设抛物线C:x2=2py(p>0)的焦点为F,A(x,y)(x≠0)是抛物线C上的一定点.(1)已 2020-07-31 …
点C为角AOB内一点,在OA、OB上分别作点D、E,使得三角形CDE为等腰直角三角形.(写出作法) 2020-08-01 …
求绿地面积A,B,C为坐落在一条南北走向的公路沿线上的三个汽车站,其中AB、BC的距离分别为3千米和 2020-11-21 …