早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知双曲线C:x23-y2=1.(1)若l:y=kx+m(mk≠0)与C交于不同的两点M,N都在以A(0,-1)为圆心的圆上,求m的取值范围;(2)若将(1)中的“双曲线C”改为““双曲线C的右支”,其余条件

题目详情
已知双曲线C:
x2
3
-y2=1.
(1)若l:y=kx+m(mk≠0)与C交于不同的两点M,N都在以A(0,-1)为圆心的圆上,求m的取值范围;
(2)若将(1)中的“双曲线C”改为““双曲线C的右支”,其余条件不变,求m的取值范围.
▼优质解答
答案和解析
(1)设M(x1,y1)、N(x2,y2),
y=kx+m
x2
3
-y2=1

消去y整理可得(1-3k2)x2-6kmx-3m2-3=0,
∵直线y=kx+m(k≠0,m≠0)与该双曲线交于不同的两点M、N,
∴△=(-6km)2-4(1-3k2)(-3m2-3)>0,即m2+1>3k2,③
∵M、N两点都在以A为圆心的同一圆上,
∴|MA|=|NA|,
x12+(y1+1)2
=
x22+(y2+1)2

∵y1=kx1+m,y2=kx2+m,
∴(1+k2)(x1+x2)+2k(m+1)=0
∵x1+x2=
6km
1-3k2

∴(1+k2)•
6km
1-3k2
+2k(m+1)=0,
∴4m+1-3k2=0,
∵m2+1>3k2>0,
∴m2+1>4m+1>0
∴-
1
4
<m<0或m>4;
(2)由(1)可得直线和双曲线联立,可得
(1-3k2)x2-6kmx-3m2-3=0,
∵直线y=kx+m(k≠0,m≠0)与该双曲线的右支交于不同的两点M、N,
∴△=(-6km)2-4(1-3k2)(-3m2-3)>0,即m2+1>3k2
又x1+x2=
6km
1-3k2
>0,x1x2=-
3m2+3
1-3k2
>0,
可得km<0,1-3k2<0,
由(1)可得4m+1-3k2=0,
即有m2+1>4m+1>1,
解得m>4.