早教吧作业答案频道 -->其他-->
已知双曲线E:x2a2−y2b2=1(a>0,b>0)的离心率为e,左、右两焦点分别为F1、F2,焦距为2c,抛物线C以F2为顶点,F1为焦点,点P为抛物线与双曲线右支上的一个交点,若a|PF2|+c|PF1|=8a2,则e的值
题目详情
已知双曲线E:
−
=1(a>0,b>0)的离心率为e,左、右两焦点分别为F1、F2,焦距为2c,抛物线C以F2为顶点,F1为焦点,点P为抛物线与双曲线右支上的一个交点,若a|PF2|+c|PF1|=8a2,则e的值为( )
A.
B.3
C.
D.
| x2 |
| a2 |
| y2 |
| b2 |
A.
| 3 |
B.3
C.
| 2 |
D.
| 6 |
▼优质解答
答案和解析
如右图所示,设点P的坐标为(x0,y0),由抛物线以F2为顶点,F1为焦点,可得其准线的方程为x=3c,
根据抛物线的定义可得|PF1|=|PR|=3c-x0,又由点P为双曲线上的点,
根据双曲线的第二定义可得
=e,即得|PF2|=ex0-a,
由已知a|PF2|+c|PF1|=8a2,可得-a2+3c2=8a2,即e2=3,由e>1可得e=
,
故选A.
如右图所示,设点P的坐标为(x0,y0),由抛物线以F2为顶点,F1为焦点,可得其准线的方程为x=3c,根据抛物线的定义可得|PF1|=|PR|=3c-x0,又由点P为双曲线上的点,
根据双曲线的第二定义可得
| |PF2| | ||
x0−
|
由已知a|PF2|+c|PF1|=8a2,可得-a2+3c2=8a2,即e2=3,由e>1可得e=
| 3 |
故选A.
看了已知双曲线E:x2a2−y2b...的网友还看了以下:
圆锥曲线的已知椭圆C:x^2/2+y^2=1的右焦点为F,右准线为l,点A属于l,线段AF交C于点 2020-04-08 …
已知双曲线x^2-y^2/3=1,若一椭圆与该双曲线共焦点,且有一交点P(2,3)已知双曲线x^2 2020-04-08 …
1,设F是椭圆x^2/36+y^2/100=1的上焦点,且椭圆上恰有5个不同的点Pi,(i=1,2 2020-06-04 …
如图,已知点A,B是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的两个顶点,若点C(t,t 2020-06-21 …
已知椭圆C中心为坐标原点O一长轴端点(0,2)已知椭圆C的中心为坐标原点,一个长轴端点为(0,2) 2020-07-30 …
已知椭圆E:x^2/a^2+y^2/b^2=1(a>b>0)的右焦点F(3,0),过点F的直线交椭 2020-07-31 …
已知三角形ABC的三边长BC=a,AC=b,AB=c,O为ABC所在平面内一点,若aOA已知三角形 2020-08-01 …
已知椭圆C:x^2/a^2+y^2/b^2=(a>b>0)的离心率为根号6/3,且经过点(3/2, 2020-08-01 …
已知圆C:x^2+(y-1)^2=5,直线L:mx-y+1-m=0(1)求证:m∈R时,直线L与圆C 2020-11-01 …
(1/2)已知直线方程mx-y-m-1=0,圆的方程x^2+y^2-4x-2y+1=0.当m为何值时 2021-01-12 …