早教吧作业答案频道 -->其他-->
(2012•西宁)如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.(1)证明:四边形AECF是矩形;(2)若AB=8,求菱形的面积.
题目详情

(1)证明:四边形AECF是矩形;
(2)若AB=8,求菱形的面积.
▼优质解答
答案和解析
(1)证明:∵四边形ABCD是菱形,
∴AB=BC,
又∵AB=AC,
∴△ABC是等边三角形,
∵E是BC的中点,
∴AE⊥BC(等腰三角形三线合一),
∴∠1=90°,
∵E、F分别是BC、AD的中点,
∴AF=
AD,EC=
BC,
∵四边形ABCD是菱形,
∴AD∥BC且AD=BC,
∴AF∥EC且AF=EC,
∴四边形AECF是平行四边形(一组对边平行且相等的四边形是平行四边形),
又∵∠1=90°,
∴四边形AECF是矩形(有一个角是直角的平行四边形是矩形);
(2)在Rt△ABE中,AE=
=4
,
所以,S菱形ABCD=8×4
=32
.

∴AB=BC,
又∵AB=AC,
∴△ABC是等边三角形,
∵E是BC的中点,
∴AE⊥BC(等腰三角形三线合一),
∴∠1=90°,
∵E、F分别是BC、AD的中点,
∴AF=
1 |
2 |
1 |
2 |
∵四边形ABCD是菱形,
∴AD∥BC且AD=BC,
∴AF∥EC且AF=EC,
∴四边形AECF是平行四边形(一组对边平行且相等的四边形是平行四边形),
又∵∠1=90°,
∴四边形AECF是矩形(有一个角是直角的平行四边形是矩形);
(2)在Rt△ABE中,AE=
82−42 |
3 |
所以,S菱形ABCD=8×4
3 |
3 |
看了(2012•西宁)如图,已知菱...的网友还看了以下:
已知定义在实数集R上的函数f(x)满足下列条件1)f(0)=0f(1)=12)对任意的实数x,y都 2020-05-13 …
f(x)=(x^2+2x+a) f(bx)=9x^2-6x+2 a,b常数 则方程f(ax+b)= 2020-05-16 …
已知函数f(x-1)的图像与函数g(x)的图像关于直线y=x对称,且g(1)=2则:A,f(1)= 2020-06-27 …
数学分析习题.设函数f(x)在[a,b]上三阶可导,证明:存在一点e∈(a,b)设函数f(x)在[ 2020-07-16 …
概率密度函数的计算题设X的概率密度有关系:f(-x)=f(x),证明任意a>0,F(-a)=1-F 2020-07-30 …
设函数f(x)具有二阶导数,试证明曲线y^2=f(x)的拐点的横坐标a适合下列关系(f'(a))^ 2020-07-31 …
幂函数y=f(x)的图像经过点(2^1/2)则A:f(1)幂函数y=f(x)的图像经过点(2^1/ 2020-08-01 …
设函数f(x)在[a,b]上三阶可导,证明:存在一点e∈(a,b),使得f(b)=f(a)+1/2 2020-08-02 …
一道关于绝对值不等式的题f(x)=ax^2+bx+c,g(x)=cx^2+bx+a,│f(1)│≤ 2020-08-03 …
若f(x)是R上的的偶函数且在0,+正无穷极)上是增函数,则下列成立的a.f(-2)大于f(0)大于 2020-12-08 …