早教吧作业答案频道 -->数学-->
如图,E、F分别是矩形ABCD的BC边和CD边上的点,且S△ABE=3,S△ECF=8,S△ADF=5,则矩形ABCD的面积为.
题目详情
如图,E、F分别是矩形ABCD的BC边和CD边上的点,且S△ABE=3,S△ECF=8,S△ADF=5,则矩形ABCD的面积为______.


▼优质解答
答案和解析
如图,
S△ABE=3,即
AB•BE=3,
S△ECF=8,即
EC•CF=8,
S△ADF=5,即
AD•DF=5,
∴BE•(DF+CF)=6,即BE•DF+BE•CF=6,①
(BE+EC)•DF=10,即BE•DF+EC•DF=10②
②-①得DF•EC-BE•CF=4,DF•EC=4+BE•CF③,
①+②得2BE•DF+BE•CF+EC•DF=16,
即2(6-BE•CF)+BE•CF+EC•DF=16④,
由
EC•CF=8可知,EC•CF=16,
则BE•FC=4,BE•DF=2,
即四边形AHMG的面积为2,
则S矩形ABCD=SABEG+SECFM+SAHFD-SAHMG=6+16+10-2=30.
故此题答案为30.
作EG⊥AD交AD于G,FH⊥AB交AB于H,FH与EG交于Q.
由已知条件和作图条件可知,
AD=BC=FH,AB=CD=EG,CE=FQ=DG,BE=QH=AG,DF=QG=AH.
AB•BE=3×2(1),
AD•DF=5×2(2),
CF•CE=CF•(BC-BE)=CF•BC-CF•BE=2×8(3),
CF•CE=(CD-DF)EC=EC•CD-EC•DF=2×8(4),
(1)+(4)得:AB•BC-EC•DF=22(5),
(2)+(3)得:AD•CD-CF•BE=26(6),
(5)-(6)得:EC•DF-CF•BE=4,
因CF=EQ,EC=FQ,所以FQ•DF-EQ•BE=4,
S四边形FQGD-S四边形BEQH=4,
设S四边形BEQH=x,S四边形FQGD=x+4,
=
=
(在两个矩形中,长和宽如有一边对应相等,那么对应的另一边的比等于两个矩形面积的比),
设S四边形AGQH=y,
=
,
y=
,
S四边形ABEG=2S△ABE=2×8=16,
又∵S四边形ABEG=S四边形AGQH+S四边形BEQH=
+x=3×2=6,
解得:x1=4,x2=-24(不合题意舍去)
S矩形ABCD=S四边形AGQH+S四边形BEQH+S四边形ECFQ+S四边形FQGD=y+x+8*2+x+4=x(x+4)/16+x+8*2+x+4=4*(4+4)/16+4+16+4+4=30

S△ABE=3,即
1 |
2 |
S△ECF=8,即
1 |
2 |
S△ADF=5,即
1 |
2 |
∴BE•(DF+CF)=6,即BE•DF+BE•CF=6,①
(BE+EC)•DF=10,即BE•DF+EC•DF=10②
②-①得DF•EC-BE•CF=4,DF•EC=4+BE•CF③,
①+②得2BE•DF+BE•CF+EC•DF=16,
即2(6-BE•CF)+BE•CF+EC•DF=16④,
由
1 |
2 |
则BE•FC=4,BE•DF=2,
即四边形AHMG的面积为2,
则S矩形ABCD=SABEG+SECFM+SAHFD-SAHMG=6+16+10-2=30.
故此题答案为30.
作EG⊥AD交AD于G,FH⊥AB交AB于H,FH与EG交于Q.
由已知条件和作图条件可知,
AD=BC=FH,AB=CD=EG,CE=FQ=DG,BE=QH=AG,DF=QG=AH.
AB•BE=3×2(1),
AD•DF=5×2(2),
CF•CE=CF•(BC-BE)=CF•BC-CF•BE=2×8(3),
CF•CE=(CD-DF)EC=EC•CD-EC•DF=2×8(4),
(1)+(4)得:AB•BC-EC•DF=22(5),
(2)+(3)得:AD•CD-CF•BE=26(6),
(5)-(6)得:EC•DF-CF•BE=4,
因CF=EQ,EC=FQ,所以FQ•DF-EQ•BE=4,
S四边形FQGD-S四边形BEQH=4,
设S四边形BEQH=x,S四边形FQGD=x+4,
S四边形FQGC |
S四边形FQEC |
GQ |
QE |
S四边形AGQH |
S四边形BEQH |
设S四边形AGQH=y,
x+4 |
8×2 |
y |
x |
y=
x(x+4) |
16 |
S四边形ABEG=2S△ABE=2×8=16,
又∵S四边形ABEG=S四边形AGQH+S四边形BEQH=
x(x+4) |
16 |
解得:x1=4,x2=-24(不合题意舍去)
S矩形ABCD=S四边形AGQH+S四边形BEQH+S四边形ECFQ+S四边形FQGD=y+x+8*2+x+4=x(x+4)/16+x+8*2+x+4=4*(4+4)/16+4+16+4+4=30
看了如图,E、F分别是矩形ABCD...的网友还看了以下:
已知函数f(x)=cos(x-3分之2派)-mcos(x+3分之2派)(M属于R)的图像经过点P( 2020-04-12 …
已知函数f(x)=√3sin2x+2cos^2x+1(1)求函数f(x)的单调递增区间(2)设△A 2020-05-13 …
已知向量m=(2cosx,根号3cosx-sinx),n=(sin(x+派/6),sinx),且满 2020-05-16 …
已知函数f(x)=1-cosx+sin(x+π/6) 1求f(x)的最小正周期,2,记△ABC的内 2020-05-16 …
如果凸n边形F(n≥4)的所有对角线都相等,那么A.F∈{四边形}B.F∈{五边形}C.F∈{四边 2020-07-25 …
在三角形ABC中a.b.c分别是角A.B.C的对边,且(2a+c)+bcosC=0(1)求角B的值 2020-07-30 …
如图所示金属导线框可以绕转轴OO′转动,当流过导线框的电流如图所示时,导线框受安培力合力F及导线框 2020-07-31 …
k为实数,f(x)=(x4+kx2+1)/(x4+x2+1),对任意三个实数a,b,c存在以f(a) 2020-11-12 …
下列各项字读音与所给读音完全一致的一项是A.济(jì)济水经济人才济济无济于事B.当(dāng)应当 2020-11-25 …
(2/3)角形ABC的内角A,B,C,的对边分别为a,b,c,且c=√3,f(C)=0,若2sinA 2020-12-07 …