早教吧作业答案频道 -->数学-->
、设f(x)在[0,1]上连续,在(0,1)上可导,f(0)=f(1)=0,证明:对任意x0∈(0,1),存在ξ∈(0,1),使得f′(ξ)=f(x0).
题目详情
、设 f ( x) 在[0,1] 上连续,在(0,1) 上可导,f (0) = f (1) =
0 ,证明:对任意
x0 ∈ (0,1) ,存在ξ ∈ (0,1) ,使得 f ′(ξ ) = f ( x0 ) .
0 ,证明:对任意
x0 ∈ (0,1) ,存在ξ ∈ (0,1) ,使得 f ′(ξ ) = f ( x0 ) .
▼优质解答
答案和解析
这是运用积分中值定理.高数教材都有,很详细
看了 、设f(x)在[0,1]上连...的网友还看了以下:
函数问题f(x)二阶连续可导,f(0)=f(1)=0,f(x)在区间[0,1]上的最小函数问题f( 2020-05-14 …
已知f(0)=0,f(1)=1,f'(0)=f'(1)=0,求证|f''(x)|>4|f''(x) 2020-05-17 …
求解一道椭圆题中心在原点O的椭圆的左焦点为F(-1,0),上顶点位(0,根3),P1,P2,P3为 2020-05-21 …
1.lim[(ln(1+x))/(x^3)+f(x)/(x^2)]=0x->0求f''(0).2. 2020-06-10 …
F(x)在[0,1]上二阶可导,且limx->0f(x)/x=1,limx->1f(x)/x-1= 2020-07-26 …
不定积分题和其他题.F(x)在[0,1]上二阶可导,且limx->0f(x)/x=1,limx-> 2020-07-30 …
微积分设函数f(x)在[0,1]上连续,在(0,1)内可导,有f(0)=f(1)=0.证明:至少微 2020-07-31 …
已知定义在(0,+∞)上的函数f(x)满足:1.对于任意的x,y∈(0,+∞)都有f(x+y)=f 2020-08-01 …
f(x)在[0,1]上二阶可微且f'(0)=f'(1)=0,则存在c,使得f''(c)≥4|f(1) 2020-11-03 …
以下哪组条件可以保证f(1)是区间{0,2}上连续函数f(x)的最大值?()A.f'(1)=0B.f 2021-02-13 …