早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图(1)已知在△ABC中,AB=AC,P是△ABC内任意一点将AP绕点A顺时针旋转到AQ,使∠QAP=∠BAC,连接BQ、CP,则BQ=CP,请证明;若将点P移到等腰ABC之外,原题中其它条件不变,上面的结论是否成

题目详情
如图(1)已知在△ABC中,AB=AC,P是△ABC内任意一点将AP绕点A顺时针旋转到AQ,使∠QAP=∠BAC,连接BQ、CP,则BQ=CP,请证明;
若将点P移到等腰ABC之外,原题中其它条件不变,上面的结论是否成立?请说明理由.
▼优质解答
答案和解析
(1)证明:∵∠QAP=∠BAC,
∴∠QAB=∠PAC,
∵AP=AQ,AB=AC,
∴△QAB≌△PAC(SAS),
∴BQ=CP.

(2)成立;
证明:∵∠QAP=∠BAC,
∴∠QAB=∠PAC,
∵AP=AQ,AB=AC,
∴△QAB≌△PAC(SAS),
∴BQ=CP.