早教吧作业答案频道 -->英语-->
奥黛丽•赫本是一位享誉国际的明星,假设她是你最喜欢的明星,请根据提示要点用英语写一篇短文.PersonaldetailsNameAudreyHepburnDateofbirth4May1929PlaceofbirthBelgiumTalentsAgreatactress,agreatbe
题目详情
奥黛丽•赫本是一位享誉国际的明星,假设她是你最喜欢的明星,请根据提示要点用英语写一篇短文.
注意:1.短文须包括以上内容要点,要求语句通顺、意思连贯,可以适当发挥;
2.100个词左右.
Personal details | Name | Audrey Hepburn |
Date of birth | 4 May 1929 | |
Place of birth | Belgium | |
Talents | A great actress,a great beauty and a great humanitarian | |
Acting career | 1.dreamed of becoming a ballet dancer at a very young age | |
2.worked as a model before an actress | ||
3.won many awards,some famous works Gigi(1951):the beginning of her successful career Roman Holiday(1952):a big success,the Oscar for Best Actress for her role Ondine(1954):a Tony Award Wait Until Dark(1967),Breakfast at Tiffany's(1961),The Nun's Story(1959),Sabrina(1954):four more Oscar nominations. … | ||
Charity work | devoted much of her time to…,worked closely with UNCEF…,be presented with the the Presidential Medal of Freedom… | |
Your opinion | …is considered as…,I love her because…,… |
2.100个词左右.
▼优质解答
答案和解析
Audrey Hepburn is my favourite star.She was born on May 4th,1929,in Belgium.She is a great actress,a great bea...
看了奥黛丽•赫本是一位享誉国际的明...的网友还看了以下:
1.已知抛物线M:=4x,圆N:(x-1)+y=r(其中r为常数r>0),过点(1,0)的直线l交 2020-05-13 …
已知抛物线M:y²=4x圆N:(x-1)²+y²=r²(其中r为常数r>0)过点(1,0)的直线l 2020-05-13 …
求解高一直线与圆的问题:已知圆C:x²+(y-1)²=5已知圆C:x²+(y-1)²=5,直线l: 2020-06-30 …
已知圆C:x²+(y-1)²=5,直线l:mx-y+1-m=0(1):求证:对任意m∈R,直线l已 2020-07-18 …
两道电工题,懂的告诉下,十分感激![1]电路中,R=30欧,L=127MH,C=4UF,U=220 2020-07-19 …
请高手用MATLAB帮忙解下微分方程组教下:Dy(1)=y(2);Dy(2)=y(3)^2*u*A 2020-07-21 …
设L为光滑弧段,其弧长为L,函数P(x,y,z),Q(x,y,z),R(x,y,z)在曲线上连续, 2020-07-26 …
概率统计问题,急,推广的二项系数公式(-r,L)=(-1)^L(r+L-1,L)怎么得来的?∞∑( 2020-07-30 …
这个Mathematica三维图为什么画不出来w=1403L=150a=650w1=w/2//Nr= 2020-10-31 …
线性代数,基础解系设m*n矩阵A的秩r(A)=r,y1,y2.y(n-r+1)是非齐次线性方程组AX 2020-11-18 …