早教吧作业答案频道 -->数学-->
问题在△ABC中,AC=BC,∠ACB=90°,点E在直线BC上(B,C除外),分别经过点E和点B做AE和AB的垂线,两条垂线交于点F,研究AE和EF的数量关系.探究发现某数学兴趣小组在探究AE,EF的关
题目详情
【问题】
在△ABC中,AC=BC,∠ACB=90°,点E在直线BC上(B,C除外),分别经过点E和点B做AE和AB的垂线,两条垂线交于点F,研究AE和EF的数量关系.
【探究发现】
某数学兴趣小组在探究AE,EF的关系时,运用“从特殊到一般”的数学思想,他们发现当点E是BC的中点时,只需要取AC边的中点G(如图1),通过推理证明就可以得到AE和EF的数量关系,请你按照这种思路直接写出AE和EF的数量关系;

【数学思考】
那么当点E是直线BC上(B,C除外)(其它条件不变),上面得到的结论是否仍然成立呢?请你从“点E在线段BC上”;“点E在线段BC的延长线”;“点E在线段BC的反向延长线上”三种情况中,任选一种情况,在图2中画出图形,并证明你的结论.
在△ABC中,AC=BC,∠ACB=90°,点E在直线BC上(B,C除外),分别经过点E和点B做AE和AB的垂线,两条垂线交于点F,研究AE和EF的数量关系.
【探究发现】
某数学兴趣小组在探究AE,EF的关系时,运用“从特殊到一般”的数学思想,他们发现当点E是BC的中点时,只需要取AC边的中点G(如图1),通过推理证明就可以得到AE和EF的数量关系,请你按照这种思路直接写出AE和EF的数量关系;

【数学思考】
那么当点E是直线BC上(B,C除外)(其它条件不变),上面得到的结论是否仍然成立呢?请你从“点E在线段BC上”;“点E在线段BC的延长线”;“点E在线段BC的反向延长线上”三种情况中,任选一种情况,在图2中画出图形,并证明你的结论.
▼优质解答
答案和解析
【探究发现】AE和EF的数量关系为:AE=EF.
理由:如图1,取AC边的中点G,连接EG,

∵△ABC中,AC=BC,∠ACB=90°,
∴∠ABC=45°,AG=BE,△CEG是等腰直角三角形,
∴∠CGE=45°,∠EGA=135°,
∵AE⊥EF,AB⊥BF,
∴∠EBF=135°,∠EAG=∠FEB,
在△EAG和△FEB中,
,
∴△EAG≌△FEB(ASA),
∴AE=EF;
【数学思考】AE=EF仍然成立.
证明:①如图2,若点E在线段BC上,在AC上截取CG=CE,连接GE.

∵∠ACB=90°,
∴∠CGE=∠CEG=45°,
∵AE⊥EF,AB⊥BF,
∴∠AEF=∠ABF=∠ACB=90°,
∴∠FEB+∠AEF=∠AEB=∠EAC+∠ACB,
∴∠FEB=∠EAC,
∵CA=CB,
∴AG=BE,∠CBA=∠CAB=45°,
∴∠AGE=∠EBF=135°,
在△EAG和△FEB中,
,
∴△EAG≌△FEB(ASA),
∴AE=EF;
②如图3,若点E在线段BC的反向延长线上,在AC反向延长线上截取CG=CE,连接GE.

∵∠ACB=90°,
∴∠CGE=∠CEG=45°,
∵AE⊥EF,AB⊥BF,
∴∠AEF=∠ABF=∠ACB=90°,
∵∠FEB=∠AEF+∠AEC,∠EAG=∠C+∠AEC,
∴∠FEB=∠EAG,
∵CA=CB,
∴AG=BE,∠CBA=∠CAB=45°,
∴∠AGE=∠EBF=45°,
在△EAG和△FEB中,
,
∴△EAG≌△FEB(ASA),
∴AE=EF;
③如图4,若点E在线段BC的延长线,在AC延长线上截取CG=CE,连接GE.

∵∠ACB=90°,
∴∠CGE=45°,∠ABC=45°,
∵AE⊥EF,AB⊥BF,
∴∠AEF=∠ABF=90°,
∴∠FEB+∠AEB=90°=∠EAG+∠AEB,∠EBF=45°=∠G,
∴∠FEB=∠EAG,
∵CA=CB,
∴AG=BE,
在△EAG和△FEB中,
,
∴△EAG≌△FEB(ASA),
∴AE=EF.
理由:如图1,取AC边的中点G,连接EG,

∵△ABC中,AC=BC,∠ACB=90°,
∴∠ABC=45°,AG=BE,△CEG是等腰直角三角形,
∴∠CGE=45°,∠EGA=135°,
∵AE⊥EF,AB⊥BF,
∴∠EBF=135°,∠EAG=∠FEB,
在△EAG和△FEB中,
|
∴△EAG≌△FEB(ASA),
∴AE=EF;
【数学思考】AE=EF仍然成立.
证明:①如图2,若点E在线段BC上,在AC上截取CG=CE,连接GE.

∵∠ACB=90°,
∴∠CGE=∠CEG=45°,
∵AE⊥EF,AB⊥BF,
∴∠AEF=∠ABF=∠ACB=90°,
∴∠FEB+∠AEF=∠AEB=∠EAC+∠ACB,
∴∠FEB=∠EAC,
∵CA=CB,
∴AG=BE,∠CBA=∠CAB=45°,
∴∠AGE=∠EBF=135°,
在△EAG和△FEB中,
|
∴△EAG≌△FEB(ASA),
∴AE=EF;
②如图3,若点E在线段BC的反向延长线上,在AC反向延长线上截取CG=CE,连接GE.

∵∠ACB=90°,
∴∠CGE=∠CEG=45°,
∵AE⊥EF,AB⊥BF,
∴∠AEF=∠ABF=∠ACB=90°,
∵∠FEB=∠AEF+∠AEC,∠EAG=∠C+∠AEC,
∴∠FEB=∠EAG,
∵CA=CB,
∴AG=BE,∠CBA=∠CAB=45°,
∴∠AGE=∠EBF=45°,
在△EAG和△FEB中,
|
∴△EAG≌△FEB(ASA),
∴AE=EF;
③如图4,若点E在线段BC的延长线,在AC延长线上截取CG=CE,连接GE.

∵∠ACB=90°,
∴∠CGE=45°,∠ABC=45°,
∵AE⊥EF,AB⊥BF,
∴∠AEF=∠ABF=90°,
∴∠FEB+∠AEB=90°=∠EAG+∠AEB,∠EBF=45°=∠G,
∴∠FEB=∠EAG,
∵CA=CB,
∴AG=BE,
在△EAG和△FEB中,
|
∴△EAG≌△FEB(ASA),
∴AE=EF.
看了问题在△ABC中,AC=BC,...的网友还看了以下:
探究一,在四边形ABCD中,AB平行CD,E为BC中点角BAE=角EAFAF与CD延长线交于点F, 2020-04-27 …
在△ABC中,AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△A 2020-05-13 …
动手操作,探究填空:请准备一个锐角三角形的纸片,三个顶点分别标上字母A、B、C,并标出AB边的中点 2020-06-03 …
在△ABC,BC=a,AC=b,AB=c,设c为最长边,当a²+b²=c²时,△ABC是直角三角形 2020-06-08 …
如图,支杆OB固定在板BC上,小球A用细绳悬在杆端O处,用此装置可研究重力的方向。现从图示位置将板 2020-06-13 …
1.在RtA△BC中,∠C=90°.D,E分别是AB,AC的中点,AC=7,BC=4,若以C为圆心 2020-07-26 …
如图,在△ABC中,∠ABC=90°,AB=6cm,AD=24cm,BC与CD的长度之和为34cm 2020-07-30 …
如图,已知梯形ABCD中,AD‖BC,AB⊥BC,AB=4,如图,已知梯形ABCD中,AD∥BC, 2020-07-30 …
在直三棱柱ABC-A'B'C'中求证AB=AC=BC在直三棱柱ABC-A'B'C'中,BC'垂直A' 2020-11-02 …
点c在线段ab上,点m,n分别是ac,ab的中点,试探究mn与bc,bc间的数量关系,并说明理由第2 2020-11-21 …