早教吧作业答案频道 -->数学-->
问题在△ABC中,AC=BC,∠ACB=90°,点E在直线BC上(B,C除外),分别经过点E和点B做AE和AB的垂线,两条垂线交于点F,研究AE和EF的数量关系.探究发现某数学兴趣小组在探究AE,EF的关
题目详情
【问题】
在△ABC中,AC=BC,∠ACB=90°,点E在直线BC上(B,C除外),分别经过点E和点B做AE和AB的垂线,两条垂线交于点F,研究AE和EF的数量关系.
【探究发现】
某数学兴趣小组在探究AE,EF的关系时,运用“从特殊到一般”的数学思想,他们发现当点E是BC的中点时,只需要取AC边的中点G(如图1),通过推理证明就可以得到AE和EF的数量关系,请你按照这种思路直接写出AE和EF的数量关系;

【数学思考】
那么当点E是直线BC上(B,C除外)(其它条件不变),上面得到的结论是否仍然成立呢?请你从“点E在线段BC上”;“点E在线段BC的延长线”;“点E在线段BC的反向延长线上”三种情况中,任选一种情况,在图2中画出图形,并证明你的结论.
在△ABC中,AC=BC,∠ACB=90°,点E在直线BC上(B,C除外),分别经过点E和点B做AE和AB的垂线,两条垂线交于点F,研究AE和EF的数量关系.
【探究发现】
某数学兴趣小组在探究AE,EF的关系时,运用“从特殊到一般”的数学思想,他们发现当点E是BC的中点时,只需要取AC边的中点G(如图1),通过推理证明就可以得到AE和EF的数量关系,请你按照这种思路直接写出AE和EF的数量关系;

【数学思考】
那么当点E是直线BC上(B,C除外)(其它条件不变),上面得到的结论是否仍然成立呢?请你从“点E在线段BC上”;“点E在线段BC的延长线”;“点E在线段BC的反向延长线上”三种情况中,任选一种情况,在图2中画出图形,并证明你的结论.
▼优质解答
答案和解析
【探究发现】AE和EF的数量关系为:AE=EF.
理由:如图1,取AC边的中点G,连接EG,

∵△ABC中,AC=BC,∠ACB=90°,
∴∠ABC=45°,AG=BE,△CEG是等腰直角三角形,
∴∠CGE=45°,∠EGA=135°,
∵AE⊥EF,AB⊥BF,
∴∠EBF=135°,∠EAG=∠FEB,
在△EAG和△FEB中,
,
∴△EAG≌△FEB(ASA),
∴AE=EF;
【数学思考】AE=EF仍然成立.
证明:①如图2,若点E在线段BC上,在AC上截取CG=CE,连接GE.

∵∠ACB=90°,
∴∠CGE=∠CEG=45°,
∵AE⊥EF,AB⊥BF,
∴∠AEF=∠ABF=∠ACB=90°,
∴∠FEB+∠AEF=∠AEB=∠EAC+∠ACB,
∴∠FEB=∠EAC,
∵CA=CB,
∴AG=BE,∠CBA=∠CAB=45°,
∴∠AGE=∠EBF=135°,
在△EAG和△FEB中,
,
∴△EAG≌△FEB(ASA),
∴AE=EF;
②如图3,若点E在线段BC的反向延长线上,在AC反向延长线上截取CG=CE,连接GE.

∵∠ACB=90°,
∴∠CGE=∠CEG=45°,
∵AE⊥EF,AB⊥BF,
∴∠AEF=∠ABF=∠ACB=90°,
∵∠FEB=∠AEF+∠AEC,∠EAG=∠C+∠AEC,
∴∠FEB=∠EAG,
∵CA=CB,
∴AG=BE,∠CBA=∠CAB=45°,
∴∠AGE=∠EBF=45°,
在△EAG和△FEB中,
,
∴△EAG≌△FEB(ASA),
∴AE=EF;
③如图4,若点E在线段BC的延长线,在AC延长线上截取CG=CE,连接GE.

∵∠ACB=90°,
∴∠CGE=45°,∠ABC=45°,
∵AE⊥EF,AB⊥BF,
∴∠AEF=∠ABF=90°,
∴∠FEB+∠AEB=90°=∠EAG+∠AEB,∠EBF=45°=∠G,
∴∠FEB=∠EAG,
∵CA=CB,
∴AG=BE,
在△EAG和△FEB中,
,
∴△EAG≌△FEB(ASA),
∴AE=EF.
理由:如图1,取AC边的中点G,连接EG,

∵△ABC中,AC=BC,∠ACB=90°,
∴∠ABC=45°,AG=BE,△CEG是等腰直角三角形,
∴∠CGE=45°,∠EGA=135°,
∵AE⊥EF,AB⊥BF,
∴∠EBF=135°,∠EAG=∠FEB,
在△EAG和△FEB中,
|
∴△EAG≌△FEB(ASA),
∴AE=EF;
【数学思考】AE=EF仍然成立.
证明:①如图2,若点E在线段BC上,在AC上截取CG=CE,连接GE.

∵∠ACB=90°,
∴∠CGE=∠CEG=45°,
∵AE⊥EF,AB⊥BF,
∴∠AEF=∠ABF=∠ACB=90°,
∴∠FEB+∠AEF=∠AEB=∠EAC+∠ACB,
∴∠FEB=∠EAC,
∵CA=CB,
∴AG=BE,∠CBA=∠CAB=45°,
∴∠AGE=∠EBF=135°,
在△EAG和△FEB中,
|
∴△EAG≌△FEB(ASA),
∴AE=EF;
②如图3,若点E在线段BC的反向延长线上,在AC反向延长线上截取CG=CE,连接GE.

∵∠ACB=90°,
∴∠CGE=∠CEG=45°,
∵AE⊥EF,AB⊥BF,
∴∠AEF=∠ABF=∠ACB=90°,
∵∠FEB=∠AEF+∠AEC,∠EAG=∠C+∠AEC,
∴∠FEB=∠EAG,
∵CA=CB,
∴AG=BE,∠CBA=∠CAB=45°,
∴∠AGE=∠EBF=45°,
在△EAG和△FEB中,
|
∴△EAG≌△FEB(ASA),
∴AE=EF;
③如图4,若点E在线段BC的延长线,在AC延长线上截取CG=CE,连接GE.

∵∠ACB=90°,
∴∠CGE=45°,∠ABC=45°,
∵AE⊥EF,AB⊥BF,
∴∠AEF=∠ABF=90°,
∴∠FEB+∠AEB=90°=∠EAG+∠AEB,∠EBF=45°=∠G,
∴∠FEB=∠EAG,
∵CA=CB,
∴AG=BE,
在△EAG和△FEB中,
|
∴△EAG≌△FEB(ASA),
∴AE=EF.
看了问题在△ABC中,AC=BC,...的网友还看了以下:
设栈的初始为空,元素a,b,c,d,e,f,g依次入栈,以下出栈序列不可能出现的是A,a,b,c, 2020-05-17 …
A.(A, B, D, C, F, E, I, J, H, G)B.(A, B, D, C, E, 2020-05-26 …
若a/b=c/d=e/f,则下列各式中正确的是().A.e/f=ac/bdB.e/f=(a+c+e 2020-06-06 …
一次数学兴趣小组活动中,同学们做了一个找朋友的游戏:有六个同学A,B,C,D,E,F分别一次数学兴 2020-06-14 …
某同学用显微镜观察洋葱鳞片叶内表皮细胞时看到了如图所示几幅图象,这几幅图象在操作过程中出现的顺序依 2020-07-01 …
求证:(1)b=d,f=b^2;(2)求a,b,c,d,e,f,g的值(题目如下)设a、b、c、d 2020-07-27 …
1.找出下列字母中所含元音音素与众不同的一个.Ⅰ.G,C,F,EⅡ.Frank,Dale,Thank 2020-10-30 …
EXCEL循环或计算问题。F=A+B+C+D+E。(A.B.C.D.E.F.均要大于零)E=A*10 2020-11-01 …
二叉树遍历时,A—C—F—E—G(F是根节点,ac左子树eg右子树),为什么用中序遍历时是ACFEG 2020-12-05 …
求解多元一次不等式的编程47a-b-c-d-e-f-g>047b-a-c-d-e-f-g>023c- 2020-12-14 …