早教吧作业答案频道 -->其他-->
(2013•天津)已知函数f(x)=x2lnx.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)证明:对任意的t>0,存在唯一的s,使t=f(s).(Ⅲ)设(Ⅱ)中所确定的s关于t的函数为s=g(t),证明:当t>
题目详情
(2013•天津)已知函数f(x)=x2lnx.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)证明:对任意的t>0,存在唯一的s,使t=f(s).
(Ⅲ)设(Ⅱ)中所确定的s关于t的函数为s=g(t),证明:当t>e2时,有
<
<
.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)证明:对任意的t>0,存在唯一的s,使t=f(s).
(Ⅲ)设(Ⅱ)中所确定的s关于t的函数为s=g(t),证明:当t>e2时,有
| 2 |
| 5 |
| lng(t) |
| lnt |
| 1 |
| 2 |
▼优质解答
答案和解析
(Ⅰ)由题意可知函数的定义域为(0,+∞),
求导数可得f′(x)=2xlnx+x2•
=2xlnx+x=x(2lnx+1),
令f′(x)=0,可解得x=
,
当x变化时,f′(x),f(x)的变化情况如下表:
所以函数f(x)的单调递减区间为(0,
),单调递增区间为(
,+∞)
(Ⅱ)证明:当0<x≤1时,f(x)≤0,设t>0,令h(x)=f(x)-t,x∈[1,+∞),
由(Ⅰ)可知,h(x)在区间(1,+∞)单调递增,h(1)=-t<0,h(et)=e2tlnet-t=t(e2t-1)>0,
故存在唯一的s∈(1,+∞),使得t=f(s)成立;
(Ⅲ)证明:因为s=g(t),由(Ⅱ)知,t=f(s),且s>1,
从而
求导数可得f′(x)=2xlnx+x2•
| 1 |
| x |
令f′(x)=0,可解得x=
| 1 | ||
|
当x变化时,f′(x),f(x)的变化情况如下表:
| x | (0,
|
| (
| ||||||||||||
| f′(x) | - | 0 | + | ||||||||||||
| f(x) | 单调递减 | 极小值 | 单调递增 |
| 1 | ||
|
| 1 | ||
|
(Ⅱ)证明:当0<x≤1时,f(x)≤0,设t>0,令h(x)=f(x)-t,x∈[1,+∞),
由(Ⅰ)可知,h(x)在区间(1,+∞)单调递增,h(1)=-t<0,h(et)=e2tlnet-t=t(e2t-1)>0,
故存在唯一的s∈(1,+∞),使得t=f(s)成立;
(Ⅲ)证明:因为s=g(t),由(Ⅱ)知,t=f(s),且s>1,
从而
作业帮用户
2017-10-07
举报
看了(2013•天津)已知函数f(...的网友还看了以下:
一质点沿一条直线运动的位移x-时间t图象如图所示,则()A.t=0时刻,质点在坐标原点B.从t=0 2020-05-14 …
n阶方阵A对任意n维向量x,满足x^TAx=0,充要条件为AT=-A;证明:充分性:f=x^TAx 2020-05-17 …
r(A*A^T)=r(A^T*A)=r(A)证明方程AX=0与A^TAX=0同解AX=0显然有A^ 2020-06-10 …
设函数f(x)连续,且f(0)≠0,求极限limx→0∫x0(x−t)f(t)dtx∫x0f(x− 2020-06-12 …
如图,直角坐标系中,点B(a,0),点C(0,b),点A在第一象限.若a,b满足(a-t)2+|b 2020-06-12 …
MATLAB求解Black-Sholes方程,假设:S=1;T=0.25;rf=0.1;K=1;如 2020-06-14 …
曲线y=ex+e−x2与直线x=0,x=t(t>0)及y=0围成一曲边梯形.该曲边梯形绕x轴旋转一 2020-06-14 …
设f(x)在(-∞,+∞)内可导,且F(x)=f(x^2-1)+f(1-x^2),证明F'(1)= 2020-06-15 …
一矩形线圈绕垂直磁场方向的轴在匀强磁场中转动,产生的交变电动势e=202sin20πtV,由此可以 2020-06-22 …
设某商品从时刻0到时刻t的销售量为x(t)=kt,t∈[0,T],(k>0).欲在T时将数量为A的 2020-06-26 …