早教吧作业答案频道 -->其他-->
(2013•天津)已知函数f(x)=x2lnx.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)证明:对任意的t>0,存在唯一的s,使t=f(s).(Ⅲ)设(Ⅱ)中所确定的s关于t的函数为s=g(t),证明:当t>
题目详情
(2013•天津)已知函数f(x)=x2lnx.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)证明:对任意的t>0,存在唯一的s,使t=f(s).
(Ⅲ)设(Ⅱ)中所确定的s关于t的函数为s=g(t),证明:当t>e2时,有
<
<
.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)证明:对任意的t>0,存在唯一的s,使t=f(s).
(Ⅲ)设(Ⅱ)中所确定的s关于t的函数为s=g(t),证明:当t>e2时,有
| 2 |
| 5 |
| lng(t) |
| lnt |
| 1 |
| 2 |
▼优质解答
答案和解析
(Ⅰ)由题意可知函数的定义域为(0,+∞),
求导数可得f′(x)=2xlnx+x2•
=2xlnx+x=x(2lnx+1),
令f′(x)=0,可解得x=
,
当x变化时,f′(x),f(x)的变化情况如下表:
所以函数f(x)的单调递减区间为(0,
),单调递增区间为(
,+∞)
(Ⅱ)证明:当0<x≤1时,f(x)≤0,设t>0,令h(x)=f(x)-t,x∈[1,+∞),
由(Ⅰ)可知,h(x)在区间(1,+∞)单调递增,h(1)=-t<0,h(et)=e2tlnet-t=t(e2t-1)>0,
故存在唯一的s∈(1,+∞),使得t=f(s)成立;
(Ⅲ)证明:因为s=g(t),由(Ⅱ)知,t=f(s),且s>1,
从而
求导数可得f′(x)=2xlnx+x2•
| 1 |
| x |
令f′(x)=0,可解得x=
| 1 | ||
|
当x变化时,f′(x),f(x)的变化情况如下表:
| x | (0,
|
| (
| ||||||||||||
| f′(x) | - | 0 | + | ||||||||||||
| f(x) | 单调递减 | 极小值 | 单调递增 |
| 1 | ||
|
| 1 | ||
|
(Ⅱ)证明:当0<x≤1时,f(x)≤0,设t>0,令h(x)=f(x)-t,x∈[1,+∞),
由(Ⅰ)可知,h(x)在区间(1,+∞)单调递增,h(1)=-t<0,h(et)=e2tlnet-t=t(e2t-1)>0,
故存在唯一的s∈(1,+∞),使得t=f(s)成立;
(Ⅲ)证明:因为s=g(t),由(Ⅱ)知,t=f(s),且s>1,
从而
作业帮用户
2017-10-07
举报
看了(2013•天津)已知函数f(...的网友还看了以下:
反比例和一次函数已知:反比例函数y=k/x(k>0)与一次函数交与E、F点,过点E、F作x、y轴的 2020-04-26 …
已知a+b=1,ab=-1设S(1)=a+bS(2)=a²+b²S(3)=a三次方+b三次方S(n 2020-06-12 …
1、设S1=1+1平方分之一+2平方分之一,S2=1+2平方分之一+3平方分之一,.,Sn=1+n 2020-06-14 …
(2014•镇江)已知过点(2,-3)的直线y=ax+b(a≠0)不经过第一象限,设s=a+2b, 2020-06-17 …
设S是一些互不相同的4元数组(a1,a2,a3,a4)的集合,其中ai=0或1,i=1,2,3,4 2020-07-09 …
已知过点(2,-3)的直线y=ax+b(a≠0)不经过第一象限,设s=a+2b,则s的取值范围是( 2020-07-17 …
已知设s1=1+1/1²+1/2²,s2=1+1/2²+1/3²,s3=1+1/3²+1/4².如 2020-07-19 …
已知过点(1,1)的直线y=ax+b(a≠0)不经过第四象限,设s=a+2b,则s的取值范围是RT 2020-07-19 …
(2014•天津)已知q和n均为给定的大于1的自然数,设集合M={0,1,2,…,q-1},集合A 2020-07-20 …
如图,已知三角形ABC中,AB=a,点D在AB边上移动(点D不与A、B重合),DE//BC,交AC 2020-07-25 …