早教吧作业答案频道 -->其他-->
(2013•天津)已知函数f(x)=x2lnx.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)证明:对任意的t>0,存在唯一的s,使t=f(s).(Ⅲ)设(Ⅱ)中所确定的s关于t的函数为s=g(t),证明:当t>
题目详情
(2013•天津)已知函数f(x)=x2lnx.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)证明:对任意的t>0,存在唯一的s,使t=f(s).
(Ⅲ)设(Ⅱ)中所确定的s关于t的函数为s=g(t),证明:当t>e2时,有
<
<
.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)证明:对任意的t>0,存在唯一的s,使t=f(s).
(Ⅲ)设(Ⅱ)中所确定的s关于t的函数为s=g(t),证明:当t>e2时,有
| 2 |
| 5 |
| lng(t) |
| lnt |
| 1 |
| 2 |
▼优质解答
答案和解析
(Ⅰ)由题意可知函数的定义域为(0,+∞),
求导数可得f′(x)=2xlnx+x2•
=2xlnx+x=x(2lnx+1),
令f′(x)=0,可解得x=
,
当x变化时,f′(x),f(x)的变化情况如下表:
所以函数f(x)的单调递减区间为(0,
),单调递增区间为(
,+∞)
(Ⅱ)证明:当0<x≤1时,f(x)≤0,设t>0,令h(x)=f(x)-t,x∈[1,+∞),
由(Ⅰ)可知,h(x)在区间(1,+∞)单调递增,h(1)=-t<0,h(et)=e2tlnet-t=t(e2t-1)>0,
故存在唯一的s∈(1,+∞),使得t=f(s)成立;
(Ⅲ)证明:因为s=g(t),由(Ⅱ)知,t=f(s),且s>1,
从而
求导数可得f′(x)=2xlnx+x2•
| 1 |
| x |
令f′(x)=0,可解得x=
| 1 | ||
|
当x变化时,f′(x),f(x)的变化情况如下表:
| x | (0,
|
| (
| ||||||||||||
| f′(x) | - | 0 | + | ||||||||||||
| f(x) | 单调递减 | 极小值 | 单调递增 |
| 1 | ||
|
| 1 | ||
|
(Ⅱ)证明:当0<x≤1时,f(x)≤0,设t>0,令h(x)=f(x)-t,x∈[1,+∞),
由(Ⅰ)可知,h(x)在区间(1,+∞)单调递增,h(1)=-t<0,h(et)=e2tlnet-t=t(e2t-1)>0,
故存在唯一的s∈(1,+∞),使得t=f(s)成立;
(Ⅲ)证明:因为s=g(t),由(Ⅱ)知,t=f(s),且s>1,
从而
作业帮用户
2017-10-07
举报
看了(2013•天津)已知函数f(...的网友还看了以下:
如何化简C中的所有项,使得他们保留5位有效数字?%随机生成一个多项式作为测试用例symsnf=sum 2020-03-31 …
已知定椭圆:x^2/a^2+y^2/b^2=1(a>b>0)的左,右顶点分别为A和B,点S和椭圆C 2020-05-13 …
考研题,求时间复杂度,请说明下理由,假定问题规模为N时,某递归算法的时间复杂度记为T(N),已知T 2020-06-15 …
下列词语中注音全都正确的一组是()急啊下列词语中注音全都正确的一组是()A、禅(chán)师淹(y 2020-07-02 …
(1)确定数a,使向量组α1=(a1...1)∧T,α2=(1a...1)∧T.αn=(1...1 2020-07-18 …
数据结构算法时间复杂度定义在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分 2020-07-23 …
已知等比数列{an}的首项为a1=2,公比为q(q为正整数),且满足3a3是8a1与a5的等差中项 2020-07-30 …
二项式展开式系数最大的问题如题老师说的方法是用T(n)>T(n+1)T(n)>T(n-1)来求得n 2020-07-31 …
求解函数极值求函数f(t)=t*log(t,n)的极值,其中n是一个很大的常数log(t,n)表示以 2020-12-08 …
异步电动机方面有一台三相鼠笼式异步电机,其额定数据为:额定输出电功率P(2n)=10kw,n(N)= 2020-12-13 …