早教吧作业答案频道 -->数学-->
已知t∈R,函数f(x)=2x+tlnx.(1)当t=1时,讨论f(x)的单调性;(2)当t>0时,若函数f(x)的最小值为g(t),求g(t)的最大值;(3)设函数h(x)=f(x)+|(t-2)x|,x∈[1,+∞),求
题目详情
已知t∈R,函数f(x)=
+tlnx.
(1)当t=1时,讨论f(x)的单调性;
(2)当t>0时,若函数f(x)的最小值为g(t),求g(t)的最大值;
(3)设函数h(x)=f(x)+|(t-2)x|,x∈[1,+∞),求证:h(x)≥2.
2 |
x |
(1)当t=1时,讨论f(x)的单调性;
(2)当t>0时,若函数f(x)的最小值为g(t),求g(t)的最大值;
(3)设函数h(x)=f(x)+|(t-2)x|,x∈[1,+∞),求证:h(x)≥2.
▼优质解答
答案和解析
(1)t=1时,f(x)=2x+lnx,(x>0),f′(x)=x-2x2,∵x∈(0,+∞),故f(x)在(0,2)递减,在(2,+∞)递增;(2)当t>0时,f′(x)=tx-2x2=0⇒x=2t,x,f′(x),f(x)的变化如下:x(0,2t)2...
看了已知t∈R,函数f(x)=2x...的网友还看了以下:
已知指数函数y=g(x)满足g(3)=8,又定义域为实数集R的函数f(x)=1-g(x)1+g(x 2020-05-02 …
原函数与不定积分的结论1、如果f(x)有原函数,那么f(x)的原函数一定有无数多个.2、如果F(x 2020-05-13 …
设f(x)=[g(x)-e^(-x)]/x(x不等于0)0(x=0),其中g(x)是有二阶连续函数 2020-05-17 …
R上的函数f(x),g(x).函数y=f(g(x))有不动点.则函数y=g(f(x))不可能是A. 2020-05-17 …
设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是 2020-06-09 …
设f(x),g(x)是定义域为R的恒大于零的可导函数,且f′(x)g(x)-f(x)g′(x)<0 2020-06-10 …
设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是().设函数f(x)和g( 2020-07-08 …
关于函数的零点的问题有结论说函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的实数根 2020-12-12 …
已知两个分段函数f(x)和g(x),求f(g(x))只要讨论g(x)的取值范围而求f(f(x))却需 2020-12-23 …
设函数f(x)定义在(0,+∞)上,f(1)=0,导函数f′(x)=1x,g(x)=f(x)+f′( 2020-12-23 …