早教吧作业答案频道 -->数学-->
函数f(x)=2sinxcos(x-π/3)-√3cos^2x+sian(x+π/2)sinx将函数f(x)按向量a平移后得到函数g(x),且当x=π/3时,g(x)取最大值3,求向量a和g(x)
题目详情
函数f(x)=2sinxcos(x-π/3)-√3cos^2x+sian(x+π/2)sinx
将函数f(x)按向量a平移后得到函数g(x),且当x=π/3时,g(x)取最大值3,求向量a和g(x)
将函数f(x)按向量a平移后得到函数g(x),且当x=π/3时,g(x)取最大值3,求向量a和g(x)
▼优质解答
答案和解析
f(x)=2sinxcos(x-π/3) - √3cos²x + sin(x+π/2)sinx
f(x)=2sinx(cosxcos(π/3) + sinxsin(π/3)) - √3cos²x + (sinxcos(π/2) + sin(π/2)cosx)sinx
f(x)=2sinx(1/2cosx + √3/2sinx) - √3cos²x + sinxcosx
f(x)=sinxcosx + √3sin²x - √3cos²x + sinxcosx
f(x)=2sinxcosx + √3(sin²x-cos²x) //2倍角公式:sin2A=2sinA·cosA cos2A=cos²A-sin²A
f(x)=sin2x -√3cos2x
f(x)=2(cos(π/3)sin2x - sin(π/3)cos2x)
f(x)=2sin(2x-π/3)
∵f(x)=sinx,当x=2kπ+π/2时f(x)取得最大值1
∴f(x)=2sin(2x-π/3),当x=kπ+5/12π时f(x)取得最大值2
∵f(x)是周期为π的周期函数,g(x)是由f(x)平移后得到的,∴g(x)也是周期为π的周期函数
∵当x=π/3时,g(x)取最大值3,且g(x)是周期函数
∴5π/12-π/3=π/12 既π/3=5π/12 - π/12
∴a=(-π/12+kπ,1) k∈Z
g(x)=2sin(2(x-(-π/12-kπ))-π/3)+1 k∈Z
g(x)=2sin(2x-π/6+2kπ)+1 k∈Z
g(x)=2sin(2x-π/6)+1
f(x)=2sinx(cosxcos(π/3) + sinxsin(π/3)) - √3cos²x + (sinxcos(π/2) + sin(π/2)cosx)sinx
f(x)=2sinx(1/2cosx + √3/2sinx) - √3cos²x + sinxcosx
f(x)=sinxcosx + √3sin²x - √3cos²x + sinxcosx
f(x)=2sinxcosx + √3(sin²x-cos²x) //2倍角公式:sin2A=2sinA·cosA cos2A=cos²A-sin²A
f(x)=sin2x -√3cos2x
f(x)=2(cos(π/3)sin2x - sin(π/3)cos2x)
f(x)=2sin(2x-π/3)
∵f(x)=sinx,当x=2kπ+π/2时f(x)取得最大值1
∴f(x)=2sin(2x-π/3),当x=kπ+5/12π时f(x)取得最大值2
∵f(x)是周期为π的周期函数,g(x)是由f(x)平移后得到的,∴g(x)也是周期为π的周期函数
∵当x=π/3时,g(x)取最大值3,且g(x)是周期函数
∴5π/12-π/3=π/12 既π/3=5π/12 - π/12
∴a=(-π/12+kπ,1) k∈Z
g(x)=2sin(2(x-(-π/12-kπ))-π/3)+1 k∈Z
g(x)=2sin(2x-π/6+2kπ)+1 k∈Z
g(x)=2sin(2x-π/6)+1
看了函数f(x)=2sinxcos...的网友还看了以下:
已知x/(x^2+x+1)=1/4,求分式x^2/(x^4+x^2+1)的值我查到了2种方法啊貌似 2020-05-12 …
解分式方程:1/X-2+1/X-6=1/X-7+1/X-11/X-2+1/X-6=1/X-7+1/ 2020-05-16 …
1.已知函数f(x)满足f(x)+2f(1/x)=2x-1,求f(x)2.设f(x)是定义在R上的 2020-05-23 …
已知,x^2-xy-2y^2=x-2y,且x-2y不等于0,则(1)x+y=(2若题中)x、y满足 2020-06-06 …
数学的变数法,就是正变,反变那些!1.已知y属於x^3,且x=3时y=54,求x=4时y的值2.已 2020-06-08 …
1.7/x²-1+8/x²-2x=37-9x/x^3-x²-x+12.3/x²+x-2=x/x-1 2020-07-18 …
已知函数f(x)=2|x-2|+ax(x∈R)有最小值.(1)求实常数a的取值范围;(2)设g(x 2020-07-27 …
,关于集合的..设集合M={x|m-4/5≤x≤m},N={x|n≤x≤n+1/4},且M,N都是 2020-07-29 …
,关于集合的..设集合M={x|m-4/5≤x≤m},N={x|n≤x≤n+1/4},且M,N都是 2020-07-29 …
1+x+x(x+1)+x(x+1)^2=(1+x)[1+x+x(x+1)]=(1+x)^2(1+x 2020-08-03 …