早教吧作业答案频道 -->数学-->
已知数列{an}的通项公式为an=3n-1,在等差数列数列{bn}中,bn>0(n∈N*),且b1+b2+b3=15,又a1+b1、a2+b2、a3+b3成等比数列.(1)求数列{an•bn}的通项公式;(2)求数列{an•bn}的前n项和Tn.
题目详情
已知数列{an}的通项公式为an=3n-1,在等差数列数列{bn}中,bn>0(n∈N*),且b1+b2+b3=15,
又a1+b1、a2+b2、a3+b3成等比数列.
(1)求数列{an•bn}的通项公式;
(2)求数列{an•bn}的前n项和Tn.
又a1+b1、a2+b2、a3+b3成等比数列.
(1)求数列{an•bn}的通项公式;
(2)求数列{an•bn}的前n项和Tn.
▼优质解答
答案和解析
(1)∵an=3n-1(n∈N*),∴a1=1,a2=3,a3=9,
在等差数列{bn}中,∵b1+b2+b3=15,∴b2=5.
设等差数列{bn}的公差为d,
∵a1+b1、a2+b2、a3+b3成等比数列.
∴(1+5-d)(9+5+d)=64,解得d=-10或d=2,
∵bn>0(n∈N*),∴舍去d=-10,取d=2,
∴b1=3,b3=7,∴bn=2n+1(n∈N*),
∴an•bn=(2n+1)3n-1,
(2)由(1)知,Tn=3×1+5×3+7×32+…+(2n-1)3n-2+(2n+1)3n-1,①
3Tn=3×3+5×32+7×33+…+(2n-1)3n-1+(2n+1)3n,②
①-②得-2Tn=3×1+2×3+2×32+2×33+…+2×3n-1-(2n+1)3n
=3+2(3+32+33+…+3n-1)-(2n+1)3n=3+2×
-(2n+1)3n=3n-(2n+1)3n=-2n•3n,
∴Tn=n•3n.
在等差数列{bn}中,∵b1+b2+b3=15,∴b2=5.
设等差数列{bn}的公差为d,
∵a1+b1、a2+b2、a3+b3成等比数列.
∴(1+5-d)(9+5+d)=64,解得d=-10或d=2,
∵bn>0(n∈N*),∴舍去d=-10,取d=2,
∴b1=3,b3=7,∴bn=2n+1(n∈N*),
∴an•bn=(2n+1)3n-1,
(2)由(1)知,Tn=3×1+5×3+7×32+…+(2n-1)3n-2+(2n+1)3n-1,①
3Tn=3×3+5×32+7×33+…+(2n-1)3n-1+(2n+1)3n,②
①-②得-2Tn=3×1+2×3+2×32+2×33+…+2×3n-1-(2n+1)3n
=3+2(3+32+33+…+3n-1)-(2n+1)3n=3+2×
3(1−3n−1) |
1−3 |
∴Tn=n•3n.
看了已知数列{an}的通项公式为a...的网友还看了以下:
在等差数列{an}中,a3+a4+a5=84 a9=73(1)求数列{an}的通项公式 (2)对任 2020-05-16 …
给定正奇数n,数列{an}:a1,a2,…,an是1,2,…,n的一个排列,定义E(a1,a2,… 2020-05-17 …
高中数学数列题一道高手进~!~an=4n+3,bn=3^n将数列an,bn的公共项,按照他们在原数 2020-06-03 …
已知数列{an}满足a1=1/4,a2=3/4,a(n+1)=2an-a(n-1)(n>等于2,n 2020-06-27 …
已知数列{an}满足a1=1/4,a2=3/4,a(n+1)=2an-a(n-1)(n>等于2,n 2020-06-27 …
已知数列{an}满足a1=1/4,a2=3/4,a(n+1)=2an-a(n-1)(n>等于2,n 2020-06-27 …
已知数列{an}满足a1=1/4,a2=3/4,a(n+1)=2an-a(n-1)(n>等于2,n 2020-06-27 …
已知数列{an}的前n项和Sn=n^2(n∈N),数列{bn}是各项均为正数的等比数列,b3=1, 2020-07-09 …
已知一个边长为a的等边三角形,现将其边长n(n为大于2的整数)等分,并以相邻等分点为顶点向外作小等 2020-08-01 …
这道题的解题过程是?对数列{an}(n∈N对数列{an}(n∈N+,an∈N+),令bk为a1,a2 2020-12-31 …