早教吧作业答案频道 -->数学-->
已知数列{an}的通项公式为an=3n-1,在等差数列数列{bn}中,bn>0(n∈N*),且b1+b2+b3=15,又a1+b1、a2+b2、a3+b3成等比数列.(1)求数列{an•bn}的通项公式;(2)求数列{an•bn}的前n项和Tn.
题目详情
已知数列{an}的通项公式为an=3n-1,在等差数列数列{bn}中,bn>0(n∈N*),且b1+b2+b3=15,
又a1+b1、a2+b2、a3+b3成等比数列.
(1)求数列{an•bn}的通项公式;
(2)求数列{an•bn}的前n项和Tn.
又a1+b1、a2+b2、a3+b3成等比数列.
(1)求数列{an•bn}的通项公式;
(2)求数列{an•bn}的前n项和Tn.
▼优质解答
答案和解析
(1)∵an=3n-1(n∈N*),∴a1=1,a2=3,a3=9,
在等差数列{bn}中,∵b1+b2+b3=15,∴b2=5.
设等差数列{bn}的公差为d,
∵a1+b1、a2+b2、a3+b3成等比数列.
∴(1+5-d)(9+5+d)=64,解得d=-10或d=2,
∵bn>0(n∈N*),∴舍去d=-10,取d=2,
∴b1=3,b3=7,∴bn=2n+1(n∈N*),
∴an•bn=(2n+1)3n-1,
(2)由(1)知,Tn=3×1+5×3+7×32+…+(2n-1)3n-2+(2n+1)3n-1,①
3Tn=3×3+5×32+7×33+…+(2n-1)3n-1+(2n+1)3n,②
①-②得-2Tn=3×1+2×3+2×32+2×33+…+2×3n-1-(2n+1)3n
=3+2(3+32+33+…+3n-1)-(2n+1)3n=3+2×
-(2n+1)3n=3n-(2n+1)3n=-2n•3n,
∴Tn=n•3n.
在等差数列{bn}中,∵b1+b2+b3=15,∴b2=5.
设等差数列{bn}的公差为d,
∵a1+b1、a2+b2、a3+b3成等比数列.
∴(1+5-d)(9+5+d)=64,解得d=-10或d=2,
∵bn>0(n∈N*),∴舍去d=-10,取d=2,
∴b1=3,b3=7,∴bn=2n+1(n∈N*),
∴an•bn=(2n+1)3n-1,
(2)由(1)知,Tn=3×1+5×3+7×32+…+(2n-1)3n-2+(2n+1)3n-1,①
3Tn=3×3+5×32+7×33+…+(2n-1)3n-1+(2n+1)3n,②
①-②得-2Tn=3×1+2×3+2×32+2×33+…+2×3n-1-(2n+1)3n
=3+2(3+32+33+…+3n-1)-(2n+1)3n=3+2×
3(1−3n−1) |
1−3 |
∴Tn=n•3n.
看了已知数列{an}的通项公式为a...的网友还看了以下:
1.已知数列{An}满足{An/n}是公差为1,的等差数列,且An+1=(n+2/n)·An+1( 2020-04-09 …
设(an)是公差不为零的等差数列,Sn为其前n项和,满足:S4=8且a1,a2,a5成等比数列,① 2020-05-13 …
在数列an中,,其中n∈N*.(1)求证:数列bn为等差数列;(2)设,试问数列cn中是否存在三项 2020-05-14 …
在等差数列an中,a1=20,an=54,其前n项和Sn=999,求公差d和项数n麻烦给一下过在等 2020-05-14 …
(1)在等差数列{an}中,是否有an=(a(n-1)+a(n+1))/2(n≥2)?(2)在数列 2020-05-14 …
(1)在等差数列{an}中,是否有an=(a(n-1)+a(n+1))/2(n≥2)?(2)在数列 2020-05-14 …
一道数列题目1.定义:在数列{an}中,若{an}^2-{an-1}^2=p,(n≥2,n∈N*, 2020-05-17 …
在公差不为零的等差数列{x(n)}和等比数列{y(n)}中,已知x1=1,且x1=y1,x2=y2 2020-06-04 …
1.已知在等差数列{an}中,a1<0,S25=S45,若Sn最小,求n.2.在等差数列{an}中 2020-07-09 …
关于等差数列的两个问题在三角形ABC中,acos^C/2+ccos^A/2=3/2b.求证abc成 2020-07-20 …