早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(1+x)n=Cn+Cn1x+Cn2x2+…+Cnnxn(x∈N*)(1+x)n=C,上式两边对x求导后令x=1,可得结论:Cn1+2Cn2+…+rCnr+nCnn=n•2n-1,利用上述解题思路,可得到许多结论.试问:Cn+2Cn1+3Cn2+…+(r+1)Cnr+…+(n+1)Cnn

题目详情
(1+x)n=Cn+Cn1x+Cn2x2+…+Cnnxn(x∈N*)(1+x)n=C,上式两边对x求导后令x=1,可得结论:Cn1+2Cn2+…+rCnr+nCnn=n•2n-1,利用上述解题思路,可得到许多结论.试问:Cn+2Cn1+3Cn2+…+(r+1)Cnr+…+(n+1)Cnn=   
▼优质解答
答案和解析
先设t=Cn+2Cn1+3Cn2+…+(r+1)Cnr+…+(n+1)Cnn再由Cnm=Cnn-m这个性质,将t转化为t=(n+1)Cn+nCn1+(n-1)Cn2+…+(r+1)Cnr+…+Cnn②,两式相加求解.【解析】设t=Cn+2Cn1+3Cn2+…+(r+1)Cnr+…+(n+1)C...