早教吧作业答案频道 -->数学-->
1/(sin2x+sinx)的不定积分怎么求
题目详情
1/(sin2x+sinx)的不定积分怎么求
▼优质解答
答案和解析
令cosx=u,则:d(cosx)=du.
∴∫[1/(sin2x+sinx)]dx
=∫{1/[sinx(2cosx+1)]}dx
=∫{sinx/[(sinx)^2(2cosx+1)]}dx
=-∫{1/[(1+cosx)(1-cosx)(2cosx+1)]}d(cosx)
=-∫{1/[(1+u)(1-u)(2u+1)]du
=-(1/2)∫[1/(1-u)+1/(1+u)]/(2u+1)}du
=-∫{1/[(2-2u)(2u+1)]}du-∫{1/[(2+2u)(2u+1)]}du
=-(1/3)∫[1/(2-2u)+1/(2u+1)]du-∫[1/(2u+1)-1/(2+2u)]du
=(1/6)ln|2-2u|+(1/6)ln|2u+1|-(1/2)ln|2u+1|-(1/2)ln|2+2u|+C
=(1/6)ln|1-u|-(1/3)ln|2u+1|-(1/2)ln|1+u|+C
=(1/6)ln(1-cosx)-(1/3)ln|1+2cosx|-(1/2)ln(1+cosx)+C.
∴∫[1/(sin2x+sinx)]dx
=∫{1/[sinx(2cosx+1)]}dx
=∫{sinx/[(sinx)^2(2cosx+1)]}dx
=-∫{1/[(1+cosx)(1-cosx)(2cosx+1)]}d(cosx)
=-∫{1/[(1+u)(1-u)(2u+1)]du
=-(1/2)∫[1/(1-u)+1/(1+u)]/(2u+1)}du
=-∫{1/[(2-2u)(2u+1)]}du-∫{1/[(2+2u)(2u+1)]}du
=-(1/3)∫[1/(2-2u)+1/(2u+1)]du-∫[1/(2u+1)-1/(2+2u)]du
=(1/6)ln|2-2u|+(1/6)ln|2u+1|-(1/2)ln|2u+1|-(1/2)ln|2+2u|+C
=(1/6)ln|1-u|-(1/3)ln|2u+1|-(1/2)ln|1+u|+C
=(1/6)ln(1-cosx)-(1/3)ln|1+2cosx|-(1/2)ln(1+cosx)+C.
看了1/(sin2x+sinx)的...的网友还看了以下:
求sin2x/3x的极限怎么求分子是sin2x.分母是3x 2020-05-14 …
求sin2x的不定积分∫sin2xdx=2∫sinxcosxdx=2∫sinxdsinx=-2co 2020-05-15 …
已知tanx=-4/3一若x属于(二分之派,派),求sinx的值二求sin2x的值已知tanx=- 2020-06-02 …
求不定积分∫(sin2x/cos^2x)dx 2020-06-10 …
高一三角函数,已知cos(π/4+x)=3/5,求值已知cos(π/4+x)=3/5若x∈(17π 2020-06-10 …
几个求不定积分的问题.第一题:∫sinx/1+sinxdx是多少?第二题,跟第一题差不多:∫dx/ 2020-06-26 …
已知函数f(x)=2cos方x-1)sin2x+2分之一cos4x求fx)的最小正周期和f(x)= 2020-07-22 …
求sin2x分之1的不定积分 2020-07-23 …
求不定积分sin2x 2020-07-23 …
几道积分问题,求助高数达人求不定积分:(sin2x)/√(2-cos^4x)dxx^2ln(1+x 2020-08-02 …