早教吧作业答案频道 -->数学-->
感知如图①,∠MON=90°,OC平分∠MON.CD⊥OM于点D,CE⊥ON于点E,可知OD=OE.(不要求证明)拓展在图①中,作∠ACB=90°,CA,CB分别交射线OM,ON于A,B两点,求证:AD=BE.应用如图
题目详情
【感知】如图①,∠MON=90°,OC平分∠MON.CD⊥OM于点D,CE⊥ON于点E,可知OD=OE.(不要求证明)
【拓展】在图①中,作∠ACB=90°,CA,CB分别交射线OM,ON于A,B两点,求证:AD=BE.
【应用】如图②,△OAB与△ABC均为直角三角形,OC平分∠AOB,O,C两点在AB的异侧.已知∠AOB=∠ACB=90°,OA=5,OB=3,求线段OC的长.

【拓展】在图①中,作∠ACB=90°,CA,CB分别交射线OM,ON于A,B两点,求证:AD=BE.
【应用】如图②,△OAB与△ABC均为直角三角形,OC平分∠AOB,O,C两点在AB的异侧.已知∠AOB=∠ACB=90°,OA=5,OB=3,求线段OC的长.

▼优质解答
答案和解析
【拓展】
∵OC平分∠MON,CD⊥OM,CE⊥ON,
∴CD=CE,∠CEB=∠CDA;
∵∠DOE=90°,
∴四边形ODCE为正方形,
∴∠DCE=90°,CD=CE;
∵∠BCA=90°,
∴∠BCE=∠ACD;
在△ACD与△BCE中,
,
∴△ACD≌△BCE(ASA),
∴AD=BE.
【应用】如图②,过点C作CM⊥OA;
CN⊥OB,交OB的延长线于点N;
由(1)知:AM=BN(设为λ),
四边形OMCN为正方形,
∴OM=ON;而OA=5,OB=3,
∴5-λ=3+λ,λ=1,
∴OM=CM=4;
由勾股定理得:OC2=42+42,
∴OC=4
.

∵OC平分∠MON,CD⊥OM,CE⊥ON,
∴CD=CE,∠CEB=∠CDA;
∵∠DOE=90°,
∴四边形ODCE为正方形,
∴∠DCE=90°,CD=CE;
∵∠BCA=90°,
∴∠BCE=∠ACD;
在△ACD与△BCE中,
|
∴△ACD≌△BCE(ASA),
∴AD=BE.
【应用】如图②,过点C作CM⊥OA;
CN⊥OB,交OB的延长线于点N;
由(1)知:AM=BN(设为λ),
四边形OMCN为正方形,
∴OM=ON;而OA=5,OB=3,
∴5-λ=3+λ,λ=1,
∴OM=CM=4;
由勾股定理得:OC2=42+42,
∴OC=4
2 |
看了感知如图①,∠MON=90°,...的网友还看了以下:
如图,在平面直角坐标系中,已知A,B,C,三点的坐标分别为A(-2,0),B(6,0),C(0,3 2020-05-15 …
如图,在平面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a,b,c满足关系 2020-05-16 …
如图所示已知AD与AB、CD交于A、D俩点,EC、BF与AB、CD相交于点E、C、B、F,且∠1= 2020-06-27 …
以知a.b满足(a-b)的平方+|ab+6|=0(1)如果X=2a+3b+3,求此时X的值;(2. 2020-07-08 …
A,B,C是数轴上的三个点,已知点A在原点0的左边,点B在原点的右边,点C在线段0B上,且OA>O 2020-07-21 …
如图,已知△ABC三个顶点的坐标分别为A(0,4),B(-1,1),C(-2,2),将△ABC向右 2020-08-02 …
如图2,是轴上a,b,c分别表示-3,-1,2.回答下列问题(1)a,b两点之间的距离是多少?b, 2020-08-03 …
如图在平面直角坐标系中顶点为4,1的抛物线交y轴于点A,角x轴于B,C两点(点B在点C的左侧)已知C 2020-12-07 …
如图,直线y=-x+3与x轴,y轴分别交于B,C两点,抛物线y=-x²+bx+c经过点B和点C,点A 2021-01-10 …
如图所示是表示有理数a,b,c三点的位置如图所示是表示有理数a,b,c三点的位置,请在数轴上标出表示 2021-01-16 …