早教吧 育儿知识 作业答案 考试题库 百科 知识分享

书面表达学校英语俱乐部拟于10月20日举办一个“戏剧之夜”,你班在选择剧目时遇到了困难.请你根据以下信息给某大学外教ProfessorTaylor写一封信,请他给你们一些建议.

题目详情

书面表达

  学校英语俱乐部拟于10月20日举办一个“戏剧之夜”,你班在选择剧目时遇到了困难.请你根据以下信息给某大学外教Professor Taylor写一封信,请他给你们一些建议.

  (1) Professor Taylor是英国戏剧方面的专家;

    (2) 剧本不应太难,内容应与校园生活相关;

    (3) 表演时间在40分钟左右.

注意:(1)信的开头已为你写好;  

    (2)词数:100左右.

September 19,2002

Dear Professor Taylor

  We're students from No.2 Middle School. Our teacher Ms Wu told us that we may write to you for help. Here' the problem.

______________________________________________

______________________________________________

______________________________________________

______________________________________________

▼优质解答
答案和解析


解析:

September 19 2002

Dear Professor Taylor

   We're students from No. 2 Middle School. Our teacher Ms Wu told us that we may write to you for help. Here's the problem . The English Club of our school is going to hold a Drama Night on October 20. Our class would like to put on a short English play. But it is very difficult to find a good play which is not too long-about 40 minutes-and which is not too difficult. It is even more difficult to find something about school life. We were told that you're an expert on English drama and has been doing research in this field for many years. Would you please give us some advice? We'll be thankful for your kind help and we're looking forward to your early reply.

Sincerely yours

Li Hua


看了书面表达学校英语俱乐部拟于10...的网友还看了以下:

楚大夫沉吟泽畔,在仰问苍天中选择了一份孤独,高吟“举世混浊我独清,众人皆醉我独醒”……后面的是什.  2020-05-13 …

怎样确定电表量程怎样通过计算确定电表量程请举一到两到典型例题思路第一,结果其次电学实验时怎样通过计  2020-05-21 …

怎样通过计算确定电表量程请举一到两到典型例题思路第一,结果其次.电学实验时怎样通过计算选择合适量程  2020-05-21 …

用举一反三,物竞天择,瞬息万变,融会贯通,推陈出新,读破五车,任选三个写段话  2020-07-12 …

解释一下矻矻穷年,融会贯通,物竞天择,举一反三的意思有个字,是金字旁加个朱,解释一下寸积*累的意思  2020-07-12 …

谭嗣同说:“生民之初,本无所谓君巨,则皆民也。民不能相治,亦不暇治,于是共举一民为君。夫日共举之,则  2020-11-03 …

给词语中画线的字选择正确的解释。“息”的解释有:A.呼吸时进出的气B.消息C.滋生、繁殖D.停止E.  2020-11-22 …

请按要求选择一个恰当的答案,把序号填在括号里.1.和“(举)世闻名”中带括号的字意思想近的是()A、  2020-11-27 …

社会生活中的博弈论3.信息决定了博弈策略的选择,错误的信息造成错误的选择,举出社会生活中那些封闭的,  2020-12-23 …

谭嗣同认为:“生民之初,本无所谓君臣,则皆民也。民不能相治,亦不暇治,于是共举一民为君。夫曰共举之,  2021-01-18 …