早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图①②,点E、F分别是线段AB、线段CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BGC.(1)线段AD和线段BC有怎样的数量关系?请说明理由;

题目详情
如图①②,点E、F分别是线段AB、线段CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BGC.
(1)线段AD和线段BC有怎样的数量关系?请说明理由;
(2)当DG⊥GC时,试判断直线AD和直线BC的位置关系,并说明理由.
作业帮
▼优质解答
答案和解析
(1)AD=BC.
理由:∵GF垂直平分DC,
∴GD=GC
同理,GA=GB,
在△ADG和△BCG中,
GD=GC
∠AGD=∠BGC
GA=GB

∴△ADG≌△BCG(SAS),
∴AD=BC;

作业帮(2)AD⊥BC.
理由:延长AD,与CG相交于点O、与BC的延长线相交于点Q.
∵△ADG≌△BCG,
∴∠ADG=∠BCG,
则∠GDO=∠QCO,
∴∠QDC+∠QCD=∠DQC+∠DCG+∠QCG=∠QDC+∠GDQ+∠DCG=∠CDG+∠DCG,
∵DG⊥GC,
∴∠QDC+∠QCD=∠CDG+∠DCG=90°,
∴∠Q=90°,
∴AD⊥BC.