早教吧作业答案频道 -->数学-->
一道有趣的问题,有点难题:取任意四个数字除了0,0,0,01,1,1,12,2,2,2...9,9,9,9将这个数字从大到小和从小到大排列得到两个四位数A,B(若有0,如0,5,6,8)则记A=8650B=568),将A-B得到M,将组成M的四个数字重
题目详情
一道有趣的问题,有点难
题:取任意四个数字除了
0,0,0,0
1,1,1,1
2,2,2,2
...
9,9,9,9
将这个数字从大到小和从小到大排列得到两个四位数A,B(若有0,如0,5,6,8)则记A=8650 B=568),将A-B 得到M,将组成M 的四个数字重复上述的操作,一直作下去,则在有限的操作内一定得到6174,请证明,并指出最少的操作步骤,证明结论.
不好意思,应该是求最多次数的步骤.
最多次数的步骤
最多次数的步骤
最多次数的步骤
最多次数的步骤
最多次数的步骤
题:取任意四个数字除了
0,0,0,0
1,1,1,1
2,2,2,2
...
9,9,9,9
将这个数字从大到小和从小到大排列得到两个四位数A,B(若有0,如0,5,6,8)则记A=8650 B=568),将A-B 得到M,将组成M 的四个数字重复上述的操作,一直作下去,则在有限的操作内一定得到6174,请证明,并指出最少的操作步骤,证明结论.
不好意思,应该是求最多次数的步骤.
最多次数的步骤
最多次数的步骤
最多次数的步骤
最多次数的步骤
最多次数的步骤
▼优质解答
答案和解析
任取一个四位数,只要四个数字不全相同,按数字递减顺序排列,构成最大数作为被减数;按数字递增顺序排列,构成最小数作为减数,其差就会得6174;如不是6174,则按上述方法再作减法,至多不过7步就必然得到6174.
如取四位数5462,按以上方法作运算如下:
6542-2456=4086 8640-0468=8172
8721-1278=7443 7443-3447=3996
9963-3699=6264 6642-2466=4176
7641-1467=6174
那么,出现6174的结果究竟有什么科学依据呢?
设M是一个四位数而且四个数字不全相同,把M的数字按递减的次序排列,
记作M(减);
然后再把M中的数字按递增次序排列,记作M增,记差M(减)-M(增)=D1,从M到D1是经过上述步骤得来的,我们把它看作一种变换,从M变换到D1记作:T(M)= D1把D1视作M一样,按上述法则做减法得到D2 ,也可看作是一种变换,把D1变换成D2,
记作:T(D1)= D2
同样D2可以变换为D3;D3变换为D4……,既T(D2)= D3,T(D3)= D4……
现在我们要证明,至多是重复7次变换就得D7=6174.
证:四位数总共有104=10000个,其中除去四个数字全相同的,余下104-10=9990个数字不全相同.我们首先证明,变换T把这9990个数只变换成54个不同的四位数.
设a、b、c、d是M的数字,并令:
a≥b≥c≥d
因为它们不全相等,上式中的等号不能同时成立.我们计算T(M)
M(减)=1000a+100b+10c+d
M(增)=1000d+100c+10b+a
T(M)= D1= M(减)-M(增)=1000(a-d)+100(b-c)+10(c-b)+d-a=999(a-d)+90(b-c)
我们注意到T(M)仅依赖于(a-d)与(b-c),因为数字a,b,c,d不全相等,因此由a≥b≥c≥d可推出;a-d>0而b-c≥0.
此外b、c在a与d之间,所以a-d≥b-c,这就意味着a-d可以取1,2,…,9九个值,并且如果它取这个集合的某个值n,b-c只能取小于n的值,至多取n.
例如,若a-d=1,则b-c只能在0与1中选到,在这种情况下,T(M)只能取值:
999×(1)+90×(0)=0999
999×(1)+90×(1)=1089
类似地,若a-d=2,T(M)只能取对应于b-c=0,1,2的三个值.把a-d=1,a-d=2,…,a-d=9的情况下b-c所可能取值的个数加起来,我们就得到2+3+4+…+10=54
这就是T(M)所可能取的值的个数.在54个可能值中,又有一部分是数码相同仅仅是数位不同的值,这些数值再变换T(M)中都对应相同的值(数学上称这两个数等价),剔除等价的因数,在T(M)的54个可能值中,只有30个是不等价的,它们是:
9990,9981,9972,9963,9954,9810,9711,9621,9531,9441,8820,8730,8721,8640,8622,8550,
8532,8442,7731,7641,7632,7551,7533,7443,6642,6552,6543,5553,5544.
对于这30个数逐个地用上述法则把它换成最大与最小数的差,至多6步就出现6174这个数.证毕.
如取四位数5462,按以上方法作运算如下:
6542-2456=4086 8640-0468=8172
8721-1278=7443 7443-3447=3996
9963-3699=6264 6642-2466=4176
7641-1467=6174
那么,出现6174的结果究竟有什么科学依据呢?
设M是一个四位数而且四个数字不全相同,把M的数字按递减的次序排列,
记作M(减);
然后再把M中的数字按递增次序排列,记作M增,记差M(减)-M(增)=D1,从M到D1是经过上述步骤得来的,我们把它看作一种变换,从M变换到D1记作:T(M)= D1把D1视作M一样,按上述法则做减法得到D2 ,也可看作是一种变换,把D1变换成D2,
记作:T(D1)= D2
同样D2可以变换为D3;D3变换为D4……,既T(D2)= D3,T(D3)= D4……
现在我们要证明,至多是重复7次变换就得D7=6174.
证:四位数总共有104=10000个,其中除去四个数字全相同的,余下104-10=9990个数字不全相同.我们首先证明,变换T把这9990个数只变换成54个不同的四位数.
设a、b、c、d是M的数字,并令:
a≥b≥c≥d
因为它们不全相等,上式中的等号不能同时成立.我们计算T(M)
M(减)=1000a+100b+10c+d
M(增)=1000d+100c+10b+a
T(M)= D1= M(减)-M(增)=1000(a-d)+100(b-c)+10(c-b)+d-a=999(a-d)+90(b-c)
我们注意到T(M)仅依赖于(a-d)与(b-c),因为数字a,b,c,d不全相等,因此由a≥b≥c≥d可推出;a-d>0而b-c≥0.
此外b、c在a与d之间,所以a-d≥b-c,这就意味着a-d可以取1,2,…,9九个值,并且如果它取这个集合的某个值n,b-c只能取小于n的值,至多取n.
例如,若a-d=1,则b-c只能在0与1中选到,在这种情况下,T(M)只能取值:
999×(1)+90×(0)=0999
999×(1)+90×(1)=1089
类似地,若a-d=2,T(M)只能取对应于b-c=0,1,2的三个值.把a-d=1,a-d=2,…,a-d=9的情况下b-c所可能取值的个数加起来,我们就得到2+3+4+…+10=54
这就是T(M)所可能取的值的个数.在54个可能值中,又有一部分是数码相同仅仅是数位不同的值,这些数值再变换T(M)中都对应相同的值(数学上称这两个数等价),剔除等价的因数,在T(M)的54个可能值中,只有30个是不等价的,它们是:
9990,9981,9972,9963,9954,9810,9711,9621,9531,9441,8820,8730,8721,8640,8622,8550,
8532,8442,7731,7641,7632,7551,7533,7443,6642,6552,6543,5553,5544.
对于这30个数逐个地用上述法则把它换成最大与最小数的差,至多6步就出现6174这个数.证毕.
看了一道有趣的问题,有点难题:取任...的网友还看了以下:
春秋战国时期有位老人叫赵越.他的大儿子在家耕作,因生产粮食多被免除了徭役;二儿子因作战有功获得了爵 2020-05-13 …
爸爸的体重比小芳重5分之2,把( )看作单位“1”,爸爸的体重是小芳的( ).爸爸的体重比小芳重5 2020-05-14 …
我有一道一元二次方程应用题不明白?某海军基地位于A处,在其正南方向200海里处有一重要目标B,在B 2020-05-16 …
用指针式用表测电流或电压时,正确的量程选择应该使表头指针指示在( )位置A.小于量程的1/3B.小于 2020-06-07 …
高血压脑出血最常见的部位是A:小脑B:大脑皮质C:桥脑D:内囊和基底核E:蛛网膜下腔 2020-06-07 …
有一个四位数A,将四位数的各位上的数字(均不为0)重新排列得到的最大数比A大7668,得到的最小数 2020-06-24 …
一个多位数,四舍五入到万位后,约等于5000000,这个数最小是().小羊的体重是30千克,小牛的 2020-07-31 …
北海历史文化知识3小题1、北海有几处全国重点文物保护单位?答案:A、4次,B、16次,C、3次。2、 2020-11-13 …
綦江到重庆高铁是渝黔(重庆到贵阳)新线的一部分,渝黔新线全长约345公里,下列说法中正确的是()A. 2020-11-13 …
(2007•天水)如图,某海军基地位于A处,其正南方向200海里处有一个重要目标B,在B的正东方向2 2020-11-21 …