早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2014•十堰)已知抛物线C1:y=a(x+1)2-2的顶点为A,且经过点B(-2,-1).(1)求A点的坐标和抛物线C1的解析式;(2)如图1,将抛物线C1向下平移2个单位后得到抛物线C2,且抛物线C2与直线

题目详情
(2014•十堰)已知抛物线C1:y=a(x+1)2-2的顶点为A,且经过点B(-2,-1).
(1)求A点的坐标和抛物线C1的解析式;
(2)如图1,将抛物线C1向下平移2个单位后得到抛物线C2,且抛物线C2与直线AB相交于C,D两点,求S△OAC:S△OAD的值;
(3)如图2,若过P(-4,0),Q(0,2)的直线为l,点E在(2)中抛物线C2对称轴右侧部分(含顶点)运动,直线m过点C和点E.问:是否存在直线m,使直线l,m与x轴围成的三角形和直线l,m与y轴围成的三角形相似?若存在,求出直线m的解析式;若不存在,说明理由.
▼优质解答
答案和解析
(1)∵抛物线C1:y=a(x+1)2-2的顶点为A,
∴点A的坐标为(-1,-2).
∵抛物线C1:y=a(x+1)2-2经过点B(-2,-1),
∴a(-2+1)2-2=-1.
解得:a=1.
∴抛物线C1的解析式为:y=(x+1)2-2.

(2)∵抛物线C2是由抛物线C1向下平移2个单位所得,
∴抛物线C2的解析式为:y=(x+1)2-2-2=(x+1)2-4.
设直线AB的解析式为y=kx+b.
∵A(-1,-2),B(-2,-1),
−k+b=−2
−2k+b=−1

解得:
k=−1
b=−3

∴直线AB的解析式为y=-x-3.
联立
y=(x+1)2−4
y=−x−3

解得:
作业帮用户 2016-12-12 举报
问题解析
(1)由抛物线的顶点式易得顶点A坐标,把点B的坐标代入抛物线的解析式即可解决问题.
(2)根据平移法则求出抛物线C2的解析式,用待定系数法求出直线AB的解析式,再通过解方程组求出抛物线C2与直线AB的交点C、D的坐标,就可以求出S△OAC:S△OAD的值.
(3)设直线m与y轴交于点G,直线l,m与x轴围成的三角形和直线l,m与y轴围成的三角形形状、位置随着点G的变化而变化,故需对点G的位置进行讨论,借助于相似三角形的判定与性质、三角函数的增减性等知识求出符合条件的点G的坐标,从而求出相应的直线m的解析式.
名师点评
本题考点:
二次函数综合题;待定系数法求一次函数解析式;待定系数法求二次函数解析式;相似三角形的判定与性质;锐角三角函数的增减性.
考点点评:
本题考查了二次函数的有关知识,考查了三角形相似的判定与性质、三角函数的定义及增减性等知识,考查了用待定系数法求二次函数及一次函数的解析式,考查了通过解方程组求两个函数图象的交点,强化了对运算能力、批判意识、分类讨论思想的考查,具有较强的综合性,有一定的难度.
我是二维码 扫描下载二维码