早教吧作业答案频道 -->其他-->
(2011•衡阳)已知抛物线y=12x2−mx+2m−72.(1)试说明:无论m为何实数,该抛物线与x轴总有两个不同的交点.(2)如图,当抛物线的对称轴为直线x=3时,抛物线的顶点为点C,直线y=x-1与
题目详情

1 |
2 |
7 |
2 |
(1)试说明:无论m为何实数,该抛物线与x轴总有两个不同的交点.
(2)如图,当抛物线的对称轴为直线x=3时,抛物线的顶点为点C,直线y=x-1与抛物线交于A、B两点,并与它的对称轴交于点D.
①抛物线上是否存在一点P使得四边形ACPD是正方形?若存在,求出点P的坐标;若不存在,说明理由;
②平移直线CD,交直线AB于点M,交抛物线于点N,通过怎样的平移能使得以C、D、M、N为顶点的四边形是平行四边形?
▼优质解答
答案和解析
(1)该函数的判别式=m2-4m+7=(m-2)2+3≥3
∴该抛物线与x轴总有两个不同的交点.
(2)由直线y=x-1与抛物线交于A、B两点,
∴点A(1,0)
代入二次函数式则m=3
故二次函数式为:y=
x2−3x+
当抛物线的对称轴为直线x=3时,则y=-2,
即顶点C为(3,-2),
把x=3代入直线y=x-1则y=2,
即点D(3,2)
则AD=AC=2
设点P(x,
x2−3x+
)
由直线AD的斜率与直线PC的斜率相等
则
=1
解得:x=3或x=5
则点P(3,-2)(与点D重合舍去)或(5,0)
经检验点(5,0)符合,
所以点P(5,0)
②设直线AB解析式为y=kx+b,将A(1,0),D(3,2)代入得直线AB:y=x-1,
设M(a,a-1),N(a,
a2-3a+
),
当以C、D、M、N为顶点的四边形是平行四边形,MN=CD,即|(a-1)-(
a2-3a+
)|=4,
解得a=4±
或3或5,
故把直线CD向右平移1+
个单位或2个单位,向左平移
-1个单位,能使得以C、D、M、N为顶点的四边形是平行四边形.
∴该抛物线与x轴总有两个不同的交点.
(2)由直线y=x-1与抛物线交于A、B两点,
∴点A(1,0)
代入二次函数式则m=3
故二次函数式为:y=
1 |
2 |
5 |
2 |
当抛物线的对称轴为直线x=3时,则y=-2,
即顶点C为(3,-2),
把x=3代入直线y=x-1则y=2,
即点D(3,2)
则AD=AC=2
2 |
设点P(x,
1 |
2 |
5 |
2 |
由直线AD的斜率与直线PC的斜率相等
则
| ||||
x−3 |
解得:x=3或x=5

则点P(3,-2)(与点D重合舍去)或(5,0)
经检验点(5,0)符合,
所以点P(5,0)
②设直线AB解析式为y=kx+b,将A(1,0),D(3,2)代入得直线AB:y=x-1,
设M(a,a-1),N(a,
1 |
2 |
5 |
2 |
当以C、D、M、N为顶点的四边形是平行四边形,MN=CD,即|(a-1)-(
1 |
2 |
5 |
2 |
解得a=4±
17 |
故把直线CD向右平移1+
17 |
17 |
看了(2011•衡阳)已知抛物线y...的网友还看了以下:
微积分啊.1.设y"=lnx,且x=1时y=-1,则y=?2.若已知∫(0到pai)dx∫(0到p 2020-05-13 …
集合M={(x,y)丨丨x丨≤4,丨y丨≤4},集合N={(x,y)丨xˆ2+yˆ2≤9}.已知点 2020-07-09 …
集合M={(x,y)丨丨x丨≤4,丨y丨≤4},集合N={(x,y)丨xˆ2+yˆ2≤9}.已知点 2020-07-09 …
1、已知f(x)=3的x次方,求证:(1)、f(x)乘以f(y)=f(x+y)(2)、f(x)除以 2020-07-30 …
证明下列各题中的直线上为圆c的切线,并求出切点的坐标.1.L:3x-4y=25C:x^2+Y^2= 2020-07-30 …
求过P且垂直于直线l0的直线的一般式方程P(-2,-1),l0:(x-1)/3=(y+2)/41. 2020-08-01 …
1、已知样本9、10、11、X、Y的平均是史10,标准差是根号下2,则X·Y=?2、已知A、B、C 2020-08-03 …
计算机组成原理的作业,十万火急,明天下午要交的!1、已知:x=0.1011,y=-0.0101,求 2020-08-03 …
1.、2(x2+1)/x+1+6(x+1)/x2+1=7时,利用换元法将原方程化为化为6y2-7y+ 2020-10-31 …
1、设Z≠0,x、y、z满足4x-7y-5z=0,2x-y-z=0.求X:Y.2、已知x、y、z为三 2020-10-31 …