早教吧作业答案频道 -->数学-->
已知1x+1y=1,x>0,y>0,x2+y2+z2=2xyz,则x+y+z的最小值为.
题目详情
已知
+
=1,x>0,y>0,x2+y2+z2=2xyz,则x+y+z的最小值为 ___ .
1 |
x |
1 |
y |
▼优质解答
答案和解析
+
=1,∴x+y=xy.①
设x+y+z=k,则z=k-x-y,
代入x2+y2+z2=2xyz=x2+y2+(k-x-y)2=2xy(k-x-y)=2(x+y)[k-(x+y)],(由①)
2(x+y)2-2xy+k2-2k(x+y)=2k(x+y)-2(x+y)2,
4(x+y)2-(4k+2)(x+y)+k2=0,
=(2k+1)2-4k2=4k+1,
x+y=(x+y)(
+
)≥4,
∴x+y=
≥4
2k+1+
≥16,
≥15-2k,
化为k≥=7.5,或k<7.5且4k2-60k+225≤4k+1,
4k2-64k+224≤0,
k2-16k+56≤0,
∴k≥8-2
,
∴x+y+z的最小值是8-2
.
故答案为:8-2
1 |
x |
1 |
y |
设x+y+z=k,则z=k-x-y,
代入x2+y2+z2=2xyz=x2+y2+(k-x-y)2=2xy(k-x-y)=2(x+y)[k-(x+y)],(由①)
2(x+y)2-2xy+k2-2k(x+y)=2k(x+y)-2(x+y)2,
4(x+y)2-(4k+2)(x+y)+k2=0,
△ |
4 |
x+y=(x+y)(
1 |
x |
1 |
y |
∴x+y=
(2k+1)+
| ||
4 |
2k+1+
4k+1 |
4k+1 |
化为k≥=7.5,或k<7.5且4k2-60k+225≤4k+1,
4k2-64k+224≤0,
k2-16k+56≤0,
∴k≥8-2
2 |
∴x+y+z的最小值是8-2
2 |
故答案为:8-2
2 |
看了已知1x+1y=1,x>0,y...的网友还看了以下:
x/(y+z+u)=y/(z+u+x)=z/(u+y+x)=u(x+y+z)求(x+y)/(z+u 2020-05-21 …
六年级三元一次方程1.解方程组6(x+y)=2(x+z)=3(y-z),x+y+z=5.2.已知x 2020-07-17 …
急求教 已知数X+Y=216,X+Z=152,Y-Z=64,W-Z=216,W-Y=152,W+ 2020-07-18 …
matlab如何画一个一般方程表示的椭球椭球曲面的一般方程:a*x^2+b*y^2+c*z^2+2 2020-08-02 …
xy-yz+zx-xz+yx+zy-2xyz因式分解后的结果是()A.(y-z)(x+y)(x-z) 2020-11-01 …
已知x<0,y>0,z<0,且|x|>|y|,|y|<|z|,化简|x+z|+|y+z|-|x+y| 2020-11-01 …
已知x<0,y>0,z<0,且|x|>|y|,|y|<|z|,化简|x+z|+|y+z|-|x+y| 2020-11-01 …
已知x>=y>=z>0,求证:x^2/y+y^2/z+z^2/x>=x^2/z+y^2/x+z^2/ 2020-11-01 …
已知x+y≠0,x≠z,y≠z,且1+yz(x+y)(x−z)+xz(x+y)(y−z)=xy(x− 2020-11-07 …
整式的运算数学题!若(x+z)²-4(x-y)(y-z)=0,试求x+z与y的关系1、若(x+z)² 2020-11-15 …