早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知公差不为零的等差数列{an}的前4项和为10,且a2,a3,a7成等比数列.(Ⅰ)求通项公式an(Ⅱ)设bn=2an,求数列{bn}的前n项和Sn.

题目详情
n237
n
n2an,求数列{bn}的前n项和Sn2an,求数列{bn}的前n项和Sn2an,求数列{bn}的前n项和Snan,求数列{bn}的前n项和Snan,求数列{bn}的前n项和Snan,求数列{bn}的前n项和Snn,求数列{bn}的前n项和Snnn
▼优质解答
答案和解析
(I)由题意可得,
4a1+6d=10
(a1+2d)2=(a1+d)(a1+6d)

∵d≠0
a1=−2
d=3

∴an=3n-5
(II)∵bn=2an=23n-5=
1
4
•8n−1
∴数列{an}是以
1
4
为首项,以8为公比的等比数列
Sn=
1
4
(1−8n)
1−8
=
8n−1
28
4a1+6d=10
(a1+2d)2=(a1+d)(a1+6d)
4a1+6d=10
(a1+2d)2=(a1+d)(a1+6d)
4a1+6d=10
(a1+2d)2=(a1+d)(a1+6d)
4a1+6d=10
(a1+2d)2=(a1+d)(a1+6d)
4a1+6d=104a1+6d=104a1+6d=101+6d=10(a1+2d)2=(a1+d)(a1+6d)(a1+2d)2=(a1+d)(a1+6d)(a1+2d)2=(a1+d)(a1+6d)1+2d)2=(a1+d)(a1+6d)2=(a1+d)(a1+6d)1+d)(a1+6d)1+6d)
∵d≠0
a1=−2
d=3

∴an=3n-5
(II)∵bn=2an=23n-5=
1
4
•8n−1
∴数列{an}是以
1
4
为首项,以8为公比的等比数列
Sn=
1
4
(1−8n)
1−8
=
8n−1
28
a1=−2
d=3
a1=−2
d=3
a1=−2
d=3
a1=−2
d=3
a1=−2a1=−2a1=−21=−2d=3d=3d=3
∴ann=3n-5
(II)∵bnn=2an=23n-5=
1
4
•8n−1
∴数列{an}是以
1
4
为首项,以8为公比的等比数列
Sn=
1
4
(1−8n)
1−8
=
8n−1
28
2an=23n-5=
1
4
•8n−1
∴数列{an}是以
1
4
为首项,以8为公比的等比数列
Sn=
1
4
(1−8n)
1−8
=
8n−1
28
an=23n-5=
1
4
•8n−1
∴数列{an}是以
1
4
为首项,以8为公比的等比数列
Sn=
1
4
(1−8n)
1−8
=
8n−1
28
n=23n-53n-5=
1
4
•8n−1
∴数列{an}是以
1
4
为首项,以8为公比的等比数列
Sn=
1
4
(1−8n)
1−8
=
8n−1
28
1
4
111444•8n−1
∴数列{an}是以
1
4
为首项,以8为公比的等比数列
Sn=
1
4
(1−8n)
1−8
=
8n−1
28
n−1
∴数列{ann}是以
1
4
为首项,以8为公比的等比数列
Sn=
1
4
(1−8n)
1−8
=
8n−1
28
1
4
111444为首项,以8为公比的等比数列
Sn=
1
4
(1−8n)
1−8
=
8n−1
28
Sn=
1
4
(1−8n)
1−8
=
8n−1
28
n=
1
4
(1−8n)
1−8
1
4
(1−8n)
1
4
(1−8n)
1
4
111444(1−8n)n)1−81−81−8=
8n−1
28
8n−1
28
8n−18n−18n−1n−1282828