早教吧作业答案频道 -->数学-->
已知:如图,在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=AE.(1)求证:四边形BECF是菱形;(2)当∠A的大小为多少度时,四边形BECF是正方形?
题目详情
已知:如图,在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=AE.

(1)求证:四边形BECF是菱形;
(2)当∠A的大小为多少度时,四边形BECF是正方形?

(1)求证:四边形BECF是菱形;
(2)当∠A的大小为多少度时,四边形BECF是正方形?
▼优质解答
答案和解析
(1)∵EF垂直平分BC,
∴CF=BF,BE=CE,∠BDE=90°,BD=CD,
又∵∠ACB=90°,
∴EF∥AC,
∴△BDE∽△BCA,
∴BE:AB=DB:BC,
∵D为BC中点,
∴DB:BC=1:2,
∴BE:AB=1:2,
∴E为AB中点,
即BE=AE,
∵CF=AE,
∴CF=BE,
∴CF=FB=BE=CE,
∴四边形BECF是菱形.
(2)当∠A=45°时,四边形BECF是正方形.
证明:∵∠A=45°,∠ACB=90°,
∴∠CBA=45°,
∴∠EBF=2∠CBA=90°,
∴菱形BECF是正方形.
∴CF=BF,BE=CE,∠BDE=90°,BD=CD,
又∵∠ACB=90°,
∴EF∥AC,
∴△BDE∽△BCA,
∴BE:AB=DB:BC,
∵D为BC中点,
∴DB:BC=1:2,
∴BE:AB=1:2,
∴E为AB中点,
即BE=AE,

∵CF=AE,
∴CF=BE,
∴CF=FB=BE=CE,
∴四边形BECF是菱形.
(2)当∠A=45°时,四边形BECF是正方形.
证明:∵∠A=45°,∠ACB=90°,
∴∠CBA=45°,
∴∠EBF=2∠CBA=90°,
∴菱形BECF是正方形.
看了 已知:如图,在四边形ABFC...的网友还看了以下:
比例线段(很简单的哦~)已知a,b,c是三角形ABC的三边长,且2分之a=3分之b=4分之c(1)求 2020-03-30 …
若b+c分之a=c+a分之b=a+b分之c,则a+b-3c分之2a+2b+c=或(2)若关于x的方 2020-04-06 …
能判定△ABC与△A'B'C'相似的条件是( )A.A'B'分之AB=A'C'分之AC B. 2020-05-16 …
三角形ABC中,a方+c方=b方+bc且c分之a=2分之根3加1求角C 2020-05-21 …
设角形ABC的内角A,B,C的对边分别为a,b,c,且A=60度,C=3b求C分之A的值 2020-06-02 …
1.要画一个三角形,需要知道三个元素,其中至少一个元素是2.三角形的三边长a,b,c,满足b分之a 2020-06-08 …
选择:诺a>b>o,c<d<o,则一定有()A,c分之a>d分之bB,c分之a<d分之b选择:诺a 2020-06-29 …
已知B+C分之A=C+A分之B=A+B分之C,求A+B分之A乘以B+C分之B乘以C+A分之C的值 2020-07-22 …
三角形ABC各边不相等,角A,B,C的对边分别为a,b,c,且acosA=bcosB求c分之a+b 2020-07-29 …
1.已知三个质数a,b,c满足a+b+c+abc=99,那么("[]'表示绝对值符号)[a-b]+ 2020-08-01 …