早教吧作业答案频道 -->数学-->
大学数学设x=x(u,v),y=y(u,v)是由方程组xu+y=1、x-yv=0所确定的隐函数
题目详情
大学数学设x=x(u,v),y=y(u,v)是由方程组xu+y=1、x-yv=0所确定的隐函数
▼优质解答
答案和解析
令 y/x = ε,z/x = η.
F(y/x, z/x) = F(ε, η) = 0,
记Fx, Fy, Fz分别表示对x, y, z求偏导;Fε, Fη分别表示对ε, η求偏导
Fx = Fε * d(y/x)/dx + Fη * d(z/x)/dx= -y / x^2 * Fε - z / x^2 * Fη, (1)
Fy = Fε * d(y/x)/dy + Fη * d(z/x)/dy= 1 / x * Fε, (2)
Fz = Fε * d(y/x)/dz + Fη * d(z/x)/dz= 1 / x * Fη, (3)
由隐函数定理:
δz/δx = -Fx / Fz, δz/δy = -Fy / Fz 代入
x(δz/δx)+y(δz/δy) = z 等价于要证: -x * Fx - y * Fy = z * Fz,利用(1),(2),(3)式有:
-x * Fx - y * Fy = -x * (-y / x^2 * Fε - z / x^2 * Fη) - y * 1 / x * Fε
= y/x * Fε + z/x * Fη - y/x * Fε = z/x * Fη = z * Fz.
得证!
F(y/x, z/x) = F(ε, η) = 0,
记Fx, Fy, Fz分别表示对x, y, z求偏导;Fε, Fη分别表示对ε, η求偏导
Fx = Fε * d(y/x)/dx + Fη * d(z/x)/dx= -y / x^2 * Fε - z / x^2 * Fη, (1)
Fy = Fε * d(y/x)/dy + Fη * d(z/x)/dy= 1 / x * Fε, (2)
Fz = Fε * d(y/x)/dz + Fη * d(z/x)/dz= 1 / x * Fη, (3)
由隐函数定理:
δz/δx = -Fx / Fz, δz/δy = -Fy / Fz 代入
x(δz/δx)+y(δz/δy) = z 等价于要证: -x * Fx - y * Fy = z * Fz,利用(1),(2),(3)式有:
-x * Fx - y * Fy = -x * (-y / x^2 * Fε - z / x^2 * Fη) - y * 1 / x * Fε
= y/x * Fε + z/x * Fη - y/x * Fε = z/x * Fη = z * Fz.
得证!
看了大学数学设x=x(u,v),y...的网友还看了以下:
设U是所有属性的集合,X、Y、Z都是U的子集,且Z=U-X-Y。下面关于多值依赖的叙述中,不正确的是 2020-05-23 …
设U是所有属性的集合,X、Y、Z都是U的子集,且Z=U-X-Y,下列关于多值依赖的叙述中,()是正确 2020-05-23 …
设U是所有属性的集合,X、Y、Z都是U的子集,且Z=U-X-Y。下面关于多值依赖的叙述中,哪个是正确 2020-05-24 …
设U是所有属性的集合,X、Y、Z都是U的子集,且Z=U-X-Y。下面关于多值依赖的叙述中,不正确的是 2020-05-24 …
设U是所有属性的集合,X,Y,Z都是U的子集,且Z=U-X-Y。下面关于多值依赖的叙述中,不正确的是 2020-05-24 …
设U是所有属性的集合,X、Y、Z都是U的子集,且Z=U-X-Y,下列关于多值依赖的叙述中,()是正确 2020-05-24 …
设F是属性组U上的一组函数依赖,下列叙述正确的是A.若Y∈U则X→Y为F所逻辑蕴含B.若X∈U则X→ 2020-05-24 …
设U是所有属性的集合,X、Y、Z都是U的子集,且Z=U-X-Y。下面关于多值依赖的叙述中,哪个是正确 2020-05-24 …
设U是所有属性的集合,X、Y、Z都是U的子集,且Z=U-X-Y。下面关于多值依赖的叙述中,不正确的是 2020-05-24 …
x+y=u+v,x/y=sinu/sinv,求方程组所确定的隐函数的指定的偏导数,求偏u/偏x,u/ 2020-10-30 …