早教吧作业答案频道 -->数学-->
已知A,B,P是双曲线x²/a²-y²/b²=1(a>0,b>0)上不同的三个点,且A,B连线经过坐标原点.若直线PA.PB的斜率的乘积Kpa*Kpb=2/3,则该双曲线的离心率为
题目详情
已知A,B,P是双曲线x²/a²-y²/b²=1(a>0,b>0)上不同的三个点,且A,B连线经过坐标原点.
若直线PA.PB的斜率的乘积Kpa*Kpb=2/3,则该双曲线的离心率为
若直线PA.PB的斜率的乘积Kpa*Kpb=2/3,则该双曲线的离心率为
▼优质解答
答案和解析
双曲线关于原点对称的.
∵A,B连线经过坐标原点
∴A,B关于原点对称
设A,P坐标分别为A(x1,y1),P(x2,y2)
那么B坐标为 (-x1,-y1)
则K(PA)=(y2-y1)/(x2-x1)
K(PB)=(y2+y1)/(x2+x1)
K(PA)·K(PB)=[(y2-y1)/(x2-x1)]·[(y2+y1)/(x2+x1)]
=[(y2)^2-(y1)^2]/[(x2)^2-(x1)^2]
已知 K(PA)·K(PB)=2/3
∴ [(y2)^2-(y1)^2]/[(x2)^2-(x1)^2]=2/3 ①
∵A,B,P在双曲线x^2/a^2-y^2/b^2=1上
∴(x1)^2/a^2-(y1)^2/b^2=1 ②
(x2)^2/a^2-(y2)^2/b^2=1 ③
③-②得:
[(x2)^2-(x1)^2]/a^2-[(y2)^2-(y1)^2]/b^2=0
移项,得 [(x2)^2-(x1)^2]/a^2=[(y2)^2-(y1)^2]/b^2
从而 b^2/a^2=[(y2)^2-(y1)^2]/[(x2)^2-(x1)^2] ④
由①④得 b^2/a^2=2/3
∵ c^2=a^2+b^2
∴ c^2=a^2+2/3*a^2=5/3*a^2
从而 c^2/a^2=5/3
又 e=c/a
由 即e^2=5/3
∴e=√(5/3)=√(15)/3
所以该双曲线的离心率=√15/3
∵A,B连线经过坐标原点
∴A,B关于原点对称
设A,P坐标分别为A(x1,y1),P(x2,y2)
那么B坐标为 (-x1,-y1)
则K(PA)=(y2-y1)/(x2-x1)
K(PB)=(y2+y1)/(x2+x1)
K(PA)·K(PB)=[(y2-y1)/(x2-x1)]·[(y2+y1)/(x2+x1)]
=[(y2)^2-(y1)^2]/[(x2)^2-(x1)^2]
已知 K(PA)·K(PB)=2/3
∴ [(y2)^2-(y1)^2]/[(x2)^2-(x1)^2]=2/3 ①
∵A,B,P在双曲线x^2/a^2-y^2/b^2=1上
∴(x1)^2/a^2-(y1)^2/b^2=1 ②
(x2)^2/a^2-(y2)^2/b^2=1 ③
③-②得:
[(x2)^2-(x1)^2]/a^2-[(y2)^2-(y1)^2]/b^2=0
移项,得 [(x2)^2-(x1)^2]/a^2=[(y2)^2-(y1)^2]/b^2
从而 b^2/a^2=[(y2)^2-(y1)^2]/[(x2)^2-(x1)^2] ④
由①④得 b^2/a^2=2/3
∵ c^2=a^2+b^2
∴ c^2=a^2+2/3*a^2=5/3*a^2
从而 c^2/a^2=5/3
又 e=c/a
由 即e^2=5/3
∴e=√(5/3)=√(15)/3
所以该双曲线的离心率=√15/3
看了已知A,B,P是双曲线x²/a...的网友还看了以下:
我们把离心率为e=(√5+1)/2的双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)成为我 2020-03-30 …
三个连续的双数,后面两个双数的乘积与前面两个双数的乘积相差120,那么这三个双数中最大是 2020-04-08 …
设双曲线C:x^2/a^2-y^2/b^2=1(a>0,b>0)的离心率为e=2,经过双曲线的右焦 2020-04-13 …
双曲线1,已知双曲线x^2-y^2/2=1的焦点为F1、F2,点M在曲线上且MF1*MF2=0求点 2020-04-26 …
Ⅰ.实验室用30%的双氧水溶液配制100g溶质质量分数为6%的双氧水溶液,需要加入水的体积为mL。 2020-05-13 …
Ⅰ.实验室用30%的双氧水溶液配制100g溶质质量分数为6%的双氧水溶液,需要加入水的体积为mL. 2020-05-13 …
双曲线x^2/a^2—y^2/b^2=1的虚轴端点与左焦点连线的中点在直线x=—a^2/c上,PQ 2020-05-14 …
某专买店有A,B,C三种袜子,若买A种4双,B种7双,C种1双共需26元;若买A种5双,B种9双, 2020-05-16 …
有A,B,C三种袜子,若买A种4双,B种7双,C种一双需26元,A,B,C三种袜子各买一双共需多少 2020-05-19 …
普通瓶式采样器适用于水深在1.0-()m的双程积深法和手工操作取样。 2020-05-28 …