早教吧作业答案频道 -->数学-->
已知A,B,P是双曲线x²/a²-y²/b²=1(a>0,b>0)上不同的三个点,且A,B连线经过坐标原点.若直线PA.PB的斜率的乘积Kpa*Kpb=2/3,则该双曲线的离心率为
题目详情
已知A,B,P是双曲线x²/a²-y²/b²=1(a>0,b>0)上不同的三个点,且A,B连线经过坐标原点.
若直线PA.PB的斜率的乘积Kpa*Kpb=2/3,则该双曲线的离心率为
若直线PA.PB的斜率的乘积Kpa*Kpb=2/3,则该双曲线的离心率为
▼优质解答
答案和解析
双曲线关于原点对称的.
∵A,B连线经过坐标原点
∴A,B关于原点对称
设A,P坐标分别为A(x1,y1),P(x2,y2)
那么B坐标为 (-x1,-y1)
则K(PA)=(y2-y1)/(x2-x1)
K(PB)=(y2+y1)/(x2+x1)
K(PA)·K(PB)=[(y2-y1)/(x2-x1)]·[(y2+y1)/(x2+x1)]
=[(y2)^2-(y1)^2]/[(x2)^2-(x1)^2]
已知 K(PA)·K(PB)=2/3
∴ [(y2)^2-(y1)^2]/[(x2)^2-(x1)^2]=2/3 ①
∵A,B,P在双曲线x^2/a^2-y^2/b^2=1上
∴(x1)^2/a^2-(y1)^2/b^2=1 ②
(x2)^2/a^2-(y2)^2/b^2=1 ③
③-②得:
[(x2)^2-(x1)^2]/a^2-[(y2)^2-(y1)^2]/b^2=0
移项,得 [(x2)^2-(x1)^2]/a^2=[(y2)^2-(y1)^2]/b^2
从而 b^2/a^2=[(y2)^2-(y1)^2]/[(x2)^2-(x1)^2] ④
由①④得 b^2/a^2=2/3
∵ c^2=a^2+b^2
∴ c^2=a^2+2/3*a^2=5/3*a^2
从而 c^2/a^2=5/3
又 e=c/a
由 即e^2=5/3
∴e=√(5/3)=√(15)/3
所以该双曲线的离心率=√15/3
∵A,B连线经过坐标原点
∴A,B关于原点对称
设A,P坐标分别为A(x1,y1),P(x2,y2)
那么B坐标为 (-x1,-y1)
则K(PA)=(y2-y1)/(x2-x1)
K(PB)=(y2+y1)/(x2+x1)
K(PA)·K(PB)=[(y2-y1)/(x2-x1)]·[(y2+y1)/(x2+x1)]
=[(y2)^2-(y1)^2]/[(x2)^2-(x1)^2]
已知 K(PA)·K(PB)=2/3
∴ [(y2)^2-(y1)^2]/[(x2)^2-(x1)^2]=2/3 ①
∵A,B,P在双曲线x^2/a^2-y^2/b^2=1上
∴(x1)^2/a^2-(y1)^2/b^2=1 ②
(x2)^2/a^2-(y2)^2/b^2=1 ③
③-②得:
[(x2)^2-(x1)^2]/a^2-[(y2)^2-(y1)^2]/b^2=0
移项,得 [(x2)^2-(x1)^2]/a^2=[(y2)^2-(y1)^2]/b^2
从而 b^2/a^2=[(y2)^2-(y1)^2]/[(x2)^2-(x1)^2] ④
由①④得 b^2/a^2=2/3
∵ c^2=a^2+b^2
∴ c^2=a^2+2/3*a^2=5/3*a^2
从而 c^2/a^2=5/3
又 e=c/a
由 即e^2=5/3
∴e=√(5/3)=√(15)/3
所以该双曲线的离心率=√15/3
看了已知A,B,P是双曲线x²/a...的网友还看了以下:
设A,B,C为三个事件,用A,B,C的运算关系表示下列个事件:(1)A发生,B与C不发生(2)A与 2020-04-05 …
设集合s={0 1 2 3 4 5} A是s的一个子集当x属於A 时 若有x-1不属於A且x+1不 2020-04-06 …
将三颗骰子各掷一次,记事件A=“三个点数都不同”,B=“至少出现一个6点”,则条件概率P(A|B) 2020-04-07 …
求不定方程整数解总共卖出3600快问a卖出多少个(钱必须刚好3600)a每个170b每个104c每 2020-04-26 …
⒈再△ABC核△A'B'C'中.∠A=∠A’,CD和C’D’分别是边AB和A’B’上的中线,再从以 2020-05-13 …
如图所示,两个等大、反向的水平力F分别作用在物体A和B上,A、B两物体均处于静止状态.若各接触面与 2020-05-13 …
A,B个代表一个整数,从A+A=A,B-B=A,B*A=A,A/B=A中求出A,B各代表什么数 2020-05-21 …
答对有奖1.已知a大于b,b小于0,a小于|b|.a,b,-a,-b4个数,哪个正数,哪个负数,有 2020-06-03 …
某桌球桌面为长方形,小球从A一个顶点沿45度角击出,恰好经过5次碰撞达到B,求AB:BC左上角那个 2020-06-16 …
以下四个结论对的有()(1)若|a|=|b|,则a=正负b;(2)若a=-b,则|a|=|b|;( 2020-06-22 …