早教吧 育儿知识 作业答案 考试题库 百科 知识分享

∫(-x^2-2)/(x^2+x+1)^2dx的积分是多少,因式分解后化到一个部分有∫1/(x^2+x+1)^2,就不知道怎么继续下去了

题目详情
∫(-x^2-2)/(x^2+x+1)^2dx的积分是多少,
因式分解后化到一个部分有∫1/(x^2+x+1)^2,就不知道怎么继续下去了
▼优质解答
答案和解析
那我就积一下最后那个吧
∫1/(x^2+x+1)^2dx
=∫1/[(x+1/2)^+3/4]^2
令t=x+1/2 a=根号3/2
上式=∫dt/(t^2+a^2)^2
又∫dt/(t^2+a^2)=t/(t^2+a^2)+∫2t^2/(t^2+a^2)^2dt
=t/(t^2+a^2)+2∫dt/(t^2+a^2)-2a^2∫dt/(t^2+a^2)^2
所以上式=t/2a^2(t^2+a^2)+(1/2a^2)∫dt/(t^2+a^2)
=t/2a^2(t^2+a^2)+(1/2a)arctan(t/a)+C
再将t=x+1/2 a=根号3/2代入上式得
∫1/(x^2+x+1)^2=(x+1)/3(x^2+x+1)+(1/根号3)arctan((2x+1)/根号3)+C
看了∫(-x^2-2)/(x^2+...的网友还看了以下: