早教吧作业答案频道 -->数学-->
已知数列{an}的前n项和为Sn,对于任意的正整数n都有Sn=n2,且各项均为正数的等比数列{bn}中,b6=b3b4,且b3和b5的等差中项是10.(1)求数列{an},{bn}的通项公式;(2)若cn=an•bn,求数列{cn}的
题目详情
已知数列{an}的前n项和为Sn,对于任意的正整数n都有Sn=n2,且各项均为正数的等比数列{bn}中,b6=b3b4,且b3和b5的等差中项是10.
(1)求数列{an},{bn}的通项公式;
(2)若cn=an•bn,求数列{cn}的前n项和Tn.
(1)求数列{an},{bn}的通项公式;
(2)若cn=an•bn,求数列{cn}的前n项和Tn.
▼优质解答
答案和解析
(1)当n≥2时,an=Sn-Sn-1=n2-(n-1)2=2n-1,
经检验n=1时也成立,
∴an=2n-1;
等比数列{bn}中,∵b6=b3b4,∴b1q5=
q2•q3,解得b1=1.
设公比q>0,由b3和b5的等差中项是10.
可知b3+b5=20.
∴q2+q4=20,
解得q=2,
从而bn=2n-1.
(2)若cn=an•bn=(2n-1)•2n-1,
∴Tn=1+3×2+5×22+…+(2n-1)•2n-1,
2Tn=2+3×22+…+(2n-3)×2n-1+(2n-1)•2n,
两式相减,得-Tn=1+2(2+22+…+2n-1)-(2n-1)•2n=1+2×
-(2n-1)•2n=-3+(3-2n)•2n,
∴Tn=3+(2n-3)•2n.
经检验n=1时也成立,
∴an=2n-1;
等比数列{bn}中,∵b6=b3b4,∴b1q5=
| b | 2 1 |
设公比q>0,由b3和b5的等差中项是10.
可知b3+b5=20.
∴q2+q4=20,
解得q=2,
从而bn=2n-1.
(2)若cn=an•bn=(2n-1)•2n-1,
∴Tn=1+3×2+5×22+…+(2n-1)•2n-1,
2Tn=2+3×22+…+(2n-3)×2n-1+(2n-1)•2n,
两式相减,得-Tn=1+2(2+22+…+2n-1)-(2n-1)•2n=1+2×
| 2(2n-1-1) |
| 2-1 |
∴Tn=3+(2n-3)•2n.
看了已知数列{an}的前n项和为S...的网友还看了以下:
定义一种对正整数n的F运算定义一种对正整数n的"F"运算1.当n为奇数时,结果为3n+5;2.当n 2020-04-06 …
定义一种对正整数n定义一种对正数n的“F”运算:一、当n为奇数时结果为3n+5;二、当n为偶数时, 2020-04-06 …
求助:证明对任意素数p,存在正整数前n项和Sn及前m项和Sm(n,m为正整数),p=Sn/Sm证明 2020-05-17 …
定义一种对正整数n的f运算定义一种对正整数n的"F"运算1.当n为奇数时,结果为3n+5;2.当n 2020-05-22 …
已知正数数列﹛an﹜中,a﹦1,前n项和为Sn,对任意n∈N*.lgSn、lgn、lg(1/a已知 2020-06-06 …
数列问题数列{An}中,A1=8,A4=2,且满足A下标(n+2)-2A下标(n+1)+A下标n= 2020-07-29 …
对任意两个正整数m,n,定义某种运算(用○×表示运算符号):当m,n都是正偶数或都是正奇数时,m○ 2020-07-30 …
用数学归纳法证明“当n为正奇数时,xn+yn能被x+y整除”的第二步是()A.假使n=2k+1时正 2020-08-01 …
若无穷数列{an}满足:①对任意n属于正整数,{a(n)+a(n+2)}/2≤a(n+1);②存在 2020-08-02 …
设数列{an}的各项都是正数,对任意n属于正整数都有(an)^2=2Sn-an,其中Sn为数列{an 2020-11-01 …