早教吧作业答案频道 -->数学-->
如图,在直角梯形ABCD中,AD∥BC,∠B=90°,∠BCD=60°,CD=5.将梯形ABCD绕点A旋转后得到梯形AB1C1D1,其中B、C、D的对应点分别是B1、C1、D1,当点B1落在边CD上时,点D1恰好落在CD的延长线上,
题目详情
如图,在直角梯形ABCD中,AD∥BC,∠B=90°,∠BCD=60°,CD=5.将梯形ABCD绕点A旋转后得到梯形AB1C1D1,其中B、C、D的对应点分别是B1、C1、D1,当点B1落在边CD上时,点D1恰好落在CD的延长线上,那么DD1的长为___.


▼优质解答
答案和解析
如图,将梯形ABCD绕点A旋转后得到梯形AB1C1D1,连接BD,
由旋转得:AD=AD1,AB=AB1,∠DAD1=∠BAB1,
∴∠DAB=∠D1AB1,且∠1=∠3,
在△DAB和△D1AB1中,
,
∴△DAB≌△D1AB1(SAS),
∴∠1=∠2,
∴∠2=∠3,
∵AD∥BC,
∴∠2=∠4,
设∠1=∠2=∠3=∠4=α,则∠5=180°-∠4-∠C=120°-α,
∵∠2+∠3+∠5=180°,
∴α+α+120°-α=180°,
解得α=60°,
∴∠1=∠2=∠3=∠4=60°,
∴△ADD1、△BCD都是等边三角形,
∴BD=CD=5,∠ABD=30°,
∴Rt△ABD中,AD=
BD=
,
∴DD1=AD=
.
故答案为:
如图,将梯形ABCD绕点A旋转后得到梯形AB1C1D1,连接BD,由旋转得:AD=AD1,AB=AB1,∠DAD1=∠BAB1,
∴∠DAB=∠D1AB1,且∠1=∠3,
在△DAB和△D1AB1中,
|
∴△DAB≌△D1AB1(SAS),
∴∠1=∠2,
∴∠2=∠3,
∵AD∥BC,
∴∠2=∠4,
设∠1=∠2=∠3=∠4=α,则∠5=180°-∠4-∠C=120°-α,
∵∠2+∠3+∠5=180°,
∴α+α+120°-α=180°,
解得α=60°,
∴∠1=∠2=∠3=∠4=60°,
∴△ADD1、△BCD都是等边三角形,
∴BD=CD=5,∠ABD=30°,
∴Rt△ABD中,AD=
| 1 |
| 2 |
| 5 |
| 2 |
∴DD1=AD=
| 5 |
| 2 |
故答案为:
| 5 |
| 2 |
看了如图,在直角梯形ABCD中,A...的网友还看了以下:
中心在原点,焦点在x轴上的双曲线C1的离心率为e,直线l与双曲线C1交于A,B两点,线段AB中点M 2020-05-13 …
【立体几何证明】在正方体ABCD—A1B1C1D1中,点N在BD上,点M在B1C上,并且CM=DN 2020-05-16 …
在棱长为1的正方体abcd-a1b1c1d1中,e是bd的中点,g在棱cd上且cg=1/4dc,f 2020-05-16 …
等边三角形ABC在平面直角坐标系中,点B,A分别在X轴的正负半轴上,点O恰好在AB的中点上,点C在 2020-05-16 …
如图1,在直角坐标系中,点A在y轴的正半轴上,点B为x轴正半轴上一点,点D的坐标为(-根号3 ,1 2020-05-16 …
如图在正方形ABCD中点E在边AB上再点E作FG垂直于DEFG与边BC相交于点F与边DA的延长线相 2020-06-12 …
在平面直角坐标系xOy中,点P在由直线,直线和直线所围成的区域内或其边界上,点Q在x轴上,若点R的 2020-06-14 …
中位线有没有逆定理连接三角形两边上的中点的线,平行且等于第三边的一半那么一条边平行于第三边,且一点 2020-08-01 …
如图,点A、B、C、D在O上,且AD=BC,E是AB延长线上一点,且BE=AB,F是EC的中点.(1 2020-12-10 …
如图在平面直角坐标系中点C在x的正半轴上,点A在y轴正半轴上,且OA=7,OC=18现将点C向上平移 2020-12-25 …