早教吧作业答案频道 -->其他-->
如图,在几何体ABC-A1B1C1中,点A1,B1,C1在平面ABC内的正投影分别为A,B,C,且AB⊥BC,E为AB1中点,AB=AA1=BB1=2CC1.(Ⅰ)求证;CE∥平面A1B1C1,(Ⅱ)求证:平面AB1C1⊥平面A1BC.
题目详情

(Ⅰ)求证;CE∥平面A1B1C1,
(Ⅱ)求证:平面AB1C1⊥平面A1BC.
▼优质解答
答案和解析
证明:(Ⅰ)∵点A1,B1,C1在平面ABC内的正投影分别为A,B,C,
∴AA1∥BB1∥CC1,
取A1B1中点F,连接EF,FC,则EF∥
A1A,EF=
A1A
∵AA1=4,CC1=2,∴CC1∥
A1A,CC1=
A1A,
∴CC1∥EF,CC1=EF,
∴四边形EFC1C为平行四边形,
∴CE∥C1F,
∵CE⊄平面A1B1C1,C1F⊂平面A1B1C1,
∴CE∥平面A1B1C1;
(Ⅱ)∵BB1⊥平面ABC,∴BB1⊥BC,
∵AB⊥BC,
∵AB∩BB1=B,
∴BC⊥平面AA1BB1,
∵AB1⊂平面AA1BB1,
∴BC⊥AB1,
∵AA1=BB1=AB,AA1∥BB1,
∴四边形AA1BB1为正方形,
∴AB1⊥A1B,
∵A1B∩BC=B,
∴AB1⊥平面A1BC,
∴平面AB1C1⊥平面A1BC.

∴AA1∥BB1∥CC1,
取A1B1中点F,连接EF,FC,则EF∥
1 |
2 |
1 |
2 |
∵AA1=4,CC1=2,∴CC1∥
1 |
2 |
1 |
2 |
∴CC1∥EF,CC1=EF,
∴四边形EFC1C为平行四边形,
∴CE∥C1F,
∵CE⊄平面A1B1C1,C1F⊂平面A1B1C1,
∴CE∥平面A1B1C1;
(Ⅱ)∵BB1⊥平面ABC,∴BB1⊥BC,
∵AB⊥BC,
∵AB∩BB1=B,
∴BC⊥平面AA1BB1,
∵AB1⊂平面AA1BB1,
∴BC⊥AB1,
∵AA1=BB1=AB,AA1∥BB1,
∴四边形AA1BB1为正方形,
∴AB1⊥A1B,
∵A1B∩BC=B,
∴AB1⊥平面A1BC,
∴平面AB1C1⊥平面A1BC.
看了如图,在几何体ABC-A1B1...的网友还看了以下:
1.判断a、b、c能否构成三角形的三条边长的条件是().选项:a、a>0&&b>0&&c>0b、a+ 2020-03-31 …
若a+b=b+c,则a-b(c为整式)若a=b,则ac=bc(c为整式)若ac=bc,则a=b(c 2020-04-22 …
能判定△ABC与△A'B'C'相似的条件是( )A.A'B'分之AB=A'C'分之AC B. 2020-05-16 …
分解因式(a-b-c)(a+b-c)-(b-c-a)(b+c-a)正确答案是这个:(a+b-c)( 2020-05-17 …
用向量证明余弦定理a、b、c都表示向量,|a|、|b|、|c|表示向量的模因为a=b-c所以a^2 2020-07-07 …
1:设a,b,c都是正数,且3的a次方=4的b次方=6的c次方,则:()A.1/c=(1/a)+( 2020-07-30 …
35.a+b+c=26;(A)证明:(1)a、b、c成等比数列,且a,b+4,c成等差数列=/=> 2020-07-30 …
为了应用平方差公式计算(a-b+c)(a+b-c),必须先适当变形,下列各变形中,正确的是()A. 2020-07-31 …
为了应用平方差公式计算(a-b+c)(a+b-c)必须先适当变形,下列变形中,正确的是[]A.[( 2020-08-02 …
已知a+b+c=0,abc不等于0,且a,b,c,互不相等,求证:[(b-c)/a+(c-a)/b+ 2020-12-01 …