早教吧作业答案频道 -->数学-->
lim(sin)^tanx(x趋近于二分之派)
题目详情
lim(sin)^tanx(x趋近于二分之派)
▼优质解答
答案和解析
解法一:∵lim(x->π/2)[(sinx-1)tanx]
=lim(x->π/2){[(sinx-1)/cosx]sinx}
=lim(x->π/2)[(sinx-1)/cosx]*lim(x->π/2)(sinx)
=lim(x->π/2){[sin(x/2)-cos(x/2)]/[cos(x/2)+sin(x/2)]}*1
=0*1
=0
lim(x->π/2){(sinx)^[1/(sinx-1)]}
=lim(x->π/2){(1+sinx-1)^[1/(sinx-1)]}
=e (应用特殊极限lim(x->0)[(1+x)^(1/x)]=e)
∴原式=lim(x->π/2)[(sinx)^tanx]
=lim(x->π/2)【(sinx)^{[1/(sinx-1)]*[(sinx-1)tanx]}】
=【lim(x->π/2){(sinx)^[1/(sinx-1)]}】^{lim(x->π/2)[(sinx-1)tanx]}
=e^{lim(x->π/2)[(sinx-1)tanx]}
=e^0
=1.
解法二:原式=lim(x->π/2)[(sinx)^tanx]
=lim(x->π/2){e^[tanx*ln(sinx)]}
=e^{lim(x->π/2)[tanx*ln(sinx)]}
=e^{lim(x->π/2)[ln(sinx)/cotx]}
=e^[lim(x->π/2)(-cotx/csc²x)]
=e^[lim(x->π/2)(-sinx*cosx)]
=e^0
=1.
=lim(x->π/2){[(sinx-1)/cosx]sinx}
=lim(x->π/2)[(sinx-1)/cosx]*lim(x->π/2)(sinx)
=lim(x->π/2){[sin(x/2)-cos(x/2)]/[cos(x/2)+sin(x/2)]}*1
=0*1
=0
lim(x->π/2){(sinx)^[1/(sinx-1)]}
=lim(x->π/2){(1+sinx-1)^[1/(sinx-1)]}
=e (应用特殊极限lim(x->0)[(1+x)^(1/x)]=e)
∴原式=lim(x->π/2)[(sinx)^tanx]
=lim(x->π/2)【(sinx)^{[1/(sinx-1)]*[(sinx-1)tanx]}】
=【lim(x->π/2){(sinx)^[1/(sinx-1)]}】^{lim(x->π/2)[(sinx-1)tanx]}
=e^{lim(x->π/2)[(sinx-1)tanx]}
=e^0
=1.
解法二:原式=lim(x->π/2)[(sinx)^tanx]
=lim(x->π/2){e^[tanx*ln(sinx)]}
=e^{lim(x->π/2)[tanx*ln(sinx)]}
=e^{lim(x->π/2)[ln(sinx)/cotx]}
=e^[lim(x->π/2)(-cotx/csc²x)]
=e^[lim(x->π/2)(-sinx*cosx)]
=e^0
=1.
看了lim(sin)^tanx(x...的网友还看了以下:
求lim趋向0 tanx lnsinx?可否使用洛必达法则.lnsinx并不趋向于0啊 2020-05-13 …
(e^x-e^tanx)/x(tanx)^2的极限当x趋向于0 步骤中x^3是怎样得来的? 2020-05-16 …
x趋近0lim2sec²tanx/6x= 2020-06-13 …
y=e^(1/x)的垂直渐近线有吗,怎么求?水平渐近线我知道,但垂直渐近线有点问题。x趋向于0+时 2020-08-01 …
高数求垂直渐近的问题我们求垂直渐近线的时候,当x趋向于零的时候,要分0+和趋0-两种情况,如果在0 2020-08-01 …
为什么同一侧的垂直渐近线和水平渐近线不能同时出现?帮我画个图,因为我实在不理解,还有就是水平渐近线 2020-08-01 …
微积分上册求曲线的渐近线问题垂直渐近线没什么大问题,主要是水平渐近线和斜渐近线.水平渐近线和斜渐近 2020-08-01 …
高数斜渐近线的ab是怎么求的?lim{x趋向于正无穷}[f(x)/x]=a,lim{x趋向于高数斜渐 2020-12-15 …
xcotx,x趋向于零,tanx-sinx/x,xcotx,x趋向于零,tanx-sinx/x,x趋 2020-12-15 …
X趋向于0lim(tanx-x/x^k)=C则K为?lim(tanx-x)/x^k=C题目这里打错了 2020-12-15 …