早教吧作业答案频道 -->数学-->
探究问题:(1)阅读理解析①如图(A),在已知△ABC所在平面上存在一点P,使它到三角形顶点的距离之和最小,则称点P为△ABC的费马点,此时PA+PB+PC的值为△ABC的费马距离;②如图(B
题目详情
探究问题:
(1)阅读理【解析】
①如图(A),在已知△ABC所在平面上存在一点P,使它到三角形顶点的距离之和最小,则称点P为△ABC的费马点,此时PA+PB+PC的值为△ABC的费马距离;
②如图(B),若四边形ABCD的四个顶点在同一圆上,则有AB•CD+BC•DA=AC•BD.此为托勒密定理;

(2)知识迁移:
①请你利用托勒密定理,解决如下问题:
如图(C),已知点P为等边△ABC外接圆的
上任意一点.求证:PB+PC=PA;
②根据(2)①的结论,我们有如下探寻△ABC(其中∠A、∠B、∠C均小于120°)的费马点和费马距离的方法:
第一步:如图(D),在△ABC的外部以BC为边长作等边△BCD及其外接圆;
第二步:在
上任取一点P′,连接P′A、P′B、P′C、P′D.易知P′A+P′B+P′C=P′A+(P′B+P′C)=P′A+______;
第三步:请你根据(1)①中定义,在图(D)中找出△ABC的费马点P,并请指出线段______的长度即为△ABC的费马距离.

(3)知识应用:
2010年4月,我国西南地区出现了罕见的持续干旱现象,许多村庄出现了人、畜饮水困难,为解决老百姓的饮水问题,解放军某部来到云南某地打井取水.
已知三村庄A、B、C构成了如图(E)所示的△ABC(其中∠A、∠B、∠C均小于120°),现选取一点P打水井,使从水井P到三村庄A、B、C所铺设的输水管总长度最小,求输水管总长度的最小值.

(1)阅读理【解析】
①如图(A),在已知△ABC所在平面上存在一点P,使它到三角形顶点的距离之和最小,则称点P为△ABC的费马点,此时PA+PB+PC的值为△ABC的费马距离;
②如图(B),若四边形ABCD的四个顶点在同一圆上,则有AB•CD+BC•DA=AC•BD.此为托勒密定理;

(2)知识迁移:
①请你利用托勒密定理,解决如下问题:
如图(C),已知点P为等边△ABC外接圆的

②根据(2)①的结论,我们有如下探寻△ABC(其中∠A、∠B、∠C均小于120°)的费马点和费马距离的方法:
第一步:如图(D),在△ABC的外部以BC为边长作等边△BCD及其外接圆;
第二步:在

第三步:请你根据(1)①中定义,在图(D)中找出△ABC的费马点P,并请指出线段______的长度即为△ABC的费马距离.

(3)知识应用:
2010年4月,我国西南地区出现了罕见的持续干旱现象,许多村庄出现了人、畜饮水困难,为解决老百姓的饮水问题,解放军某部来到云南某地打井取水.
已知三村庄A、B、C构成了如图(E)所示的△ABC(其中∠A、∠B、∠C均小于120°),现选取一点P打水井,使从水井P到三村庄A、B、C所铺设的输水管总长度最小,求输水管总长度的最小值.

▼优质解答
答案和解析
(2)知识迁移①问,只需按照题意套用托勒密定理,再利用等边三角形三边相等,将所得等式两边都除以等边三角形的边长,即可获证. ②问,借用①问结论,及线段的性质“两点之间线段最短”数学容易获解.
(3)知识应用,在(2)的基础上先画出图形,再求解.
(2)①证明:由托勒密定理可知PB•AC+PC•AB=PA•BC
∵△ABC是等边三角形
∴AB=AC=BC,
∴PB+PC=PA,
②P′D、AD,
(3)【解析】
如图,以BC为边长在△ABC的外部作等边△BCD,连接AD,则知线段AD的长即为△ABC
的费马距离.
∵△BCD为等边三角形,BC=4,
∴∠CBD=60°,BD=BC=4,
∵∠ABC=30°,∴∠ABD=90°,
在Rt△ABD中,∵AB=3,BD=4,
∴AD=
=
=5(km),
∴从水井P到三村庄A、B、C所铺设的输水管总长度的最小值为5km.
(3)知识应用,在(2)的基础上先画出图形,再求解.

∵△ABC是等边三角形
∴AB=AC=BC,
∴PB+PC=PA,
②P′D、AD,
(3)【解析】
如图,以BC为边长在△ABC的外部作等边△BCD,连接AD,则知线段AD的长即为△ABC

∵△BCD为等边三角形,BC=4,
∴∠CBD=60°,BD=BC=4,
∵∠ABC=30°,∴∠ABD=90°,
在Rt△ABD中,∵AB=3,BD=4,
∴AD=


∴从水井P到三村庄A、B、C所铺设的输水管总长度的最小值为5km.
看了探究问题:(1)阅读理解析①如...的网友还看了以下:
八下相似三角形题如图,已知在梯形ABCD中,AD‖BC,∠A=90°,AB=7,AD=2,BC=3 2020-04-25 …
初中数学综合题(相似形)如图,在RT三角形ABC中,角A=90度,AB=8,AC=6,D,E为AB 2020-04-26 …
如图所示,P为马厩,AB为草地边缘(下方为草地),CD为一河流,牧人欲从马厩牵马先去草地吃草,然后 2020-05-13 …
中学几何题,如图矩形纸片ABCD,AB=5cm,BC=10cm,CD上有一点E,ED=2cm,AD 2020-05-15 …
加油站A和商店B在马路MN的同一侧(如图),A到MN的距离大于B到MN的距离,AB=7米,一个行人 2020-06-06 …
如图,矩形ABCD中,AB=8,BC=10,点P在矩形的边DC上由D向C运动.沿直线AP翻折△AD 2020-06-13 …
质量相同的酒精与水(ρ酒精<ρ水),分别倒入底面积相同但形状如图的容器.酒精倒入甲容器,水倒入乙容 2020-07-22 …
阅读理如图1,在△ABC的边AB上取一点P,连接CP,可以把△ABC分成两个三角形,如果这两个三角 2020-07-26 …
加油站A和商店B在马路MN的同一侧(如图),A到MN的距离大于B到MN的距离,AB=7米,一个行人 2020-08-04 …
如图,在梯形ABCD中,AB∥CD,AD⊥AB,AB=3,CD=2,AD=7,试问在AD上是否存在点 2020-11-02 …