早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2014•通州区二模)某种项目的射击比赛,开始时在距目标100m处射击,如果命中记6分,且停止射击;若第一次射击未命中,可以进行第二次射击,但目标已经在150m处,这时命中记3分,且

题目详情
(2014•通州区二模)某种项目的射击比赛,开始时在距目标100m处射击,如果命中记6分,且停止射击;若第一次射击未命中,可以进行第二次射击,但目标已经在150m处,这时命中记3分,且停止射击;若第二次仍未命中,还可以进行第三次射击,此时目标已经在200m处,若第三次命中则记1分,并停止射击;若三次都未命中,则记0分,且不再继续射击.已知射手甲在100m处击中目标的概率为
1
2
,他的命中率与其距目标距离的平方成反比,且各次射击是否击中目标是相互独立的.
(Ⅰ)分别求这名射手在150m处、200m处的命中率;
(Ⅱ)设这名射手在比赛中得分数为ξ,求随机变量ξ的分布列和数学期望.
▼优质解答
答案和解析
(1)由题意,这名选手距目标xm处的命中率Px=
k
x2
,∵p100=
1
2
,∴k=5000,(2分)
p150=
5000
1502
2
9
,p200=
5000
2002
1
8

即这名射手在150m处、200m处的命中率分别为
2
9
1
8
.(5分)
(2)由题意ξ∈6,3,1,0,(6分)
记100m,150m,200m处命中目标分别为事件A,B,C
由(1)知P(ξ=6)=P(A)=
1
2
P(ξ=3)=P(
.
A
•B)=P(
.
A
)•P(B)=
1
2
×
2
9
1
9
,(7分)P(ξ=1)=P(
.
A
.
B
•C)=
1
2
×
7
9
×
1
8
7
144
,(8分)
P(ξ=0)=1−P(ξ=6)−P(ξ=3)−P(ξ=1)=
49
144
,(9分)
所以随机变量ξ的分布列为
ξ 6 3 1 0
P
1
2
1
9
7
144
49
144
(10分)Eξ=6×
1
2
+3×
1
9
+1×
7
144
+0×
49
144
487
144
(12分).