早教吧作业答案频道 -->其他-->
已知公差为d的等差数列{an}和公比q<0的等比数列{bn},a1=b1=1,a2+b2=1,a3+b3=4.(1)求数列{an}和{bn}的通项公式;(2)令Cn=2an+anbn,求数列{cn}的前n项和Sn.
题目详情
已知公差为d的等差数列{an}和公比q<0的等比数列{bn},a1=b1=1,a2+b2=1,a3+b3=4.
(1)求数列{an}和{bn}的通项公式;
(2)令Cn=2 an+anbn,求数列{cn}的前n项和Sn.
(1)求数列{an}和{bn}的通项公式;
(2)令Cn=2 an+anbn,求数列{cn}的前n项和Sn.
▼优质解答
答案和解析
(1)由题意得
,解得d=1,q=-1,
∴an=n,bn=(-1)n-1;
(2)Cn=2 an+anbn=2n+n(-1)n-1,
∴sn=c1+c2+…+cn=(2+22+…+2n)+[1•(-1)0+2•(-1)1+…+n•(-1)n-1]
令Tn=1•(-1)0+2•(-1)1+…+n•(-1)n-1,①
-Tn=1•(-1)1+2•(-1)2+…+(n-1)•(-1)n-1+n•(-1)n②,
①-②得,2Tn=(-1)0+(-1)1+…+(-1)n-1-n•(-1)n=
-n•(-1)n=
-
,
∴Tn=
-
,
∴sn=
+
-
=2n+1-
-
.
|
∴an=n,bn=(-1)n-1;
(2)Cn=2 an+anbn=2n+n(-1)n-1,
∴sn=c1+c2+…+cn=(2+22+…+2n)+[1•(-1)0+2•(-1)1+…+n•(-1)n-1]
令Tn=1•(-1)0+2•(-1)1+…+n•(-1)n-1,①
-Tn=1•(-1)1+2•(-1)2+…+(n-1)•(-1)n-1+n•(-1)n②,
①-②得,2Tn=(-1)0+(-1)1+…+(-1)n-1-n•(-1)n=
1−(−1)n |
2 |
1 |
2 |
(2n+1)(−1)n |
2 |
∴Tn=
1 |
4 |
(2n+1)(−1)n |
4 |
∴sn=
2(1−2n) |
1−2 |
1 |
4 |
(2n+1)(−1)n |
4 |
(2n+1)(−1)n |
4 |
7 |
4 |
看了 已知公差为d的等差数列{an...的网友还看了以下:
等比数列.等差数列在等比数列an中,前n项和为Sn,若S3=7,S6=63,则公比q的值是?an为 2020-05-14 …
1.在等比数列{an}中,A1=2,则这个等比数列的A(2n-1)=2.已知数列-1,a1,a2, 2020-05-14 …
数列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差数列,bn,an+1,b 2020-05-15 …
已知数列{an}满足a1=1/4,a2=3/4,a(n+1)=2an-a(n-1)(n>等于2,n 2020-06-27 …
已知数列{an}满足a1=1/4,a2=3/4,a(n+1)=2an-a(n-1)(n>等于2,n 2020-06-27 …
已知数列{an}满足a1=1/4,a2=3/4,a(n+1)=2an-a(n-1)(n>等于2,n 2020-06-27 …
已知数列{an}满足a1=1/4,a2=3/4,a(n+1)=2an-a(n-1)(n>等于2,n 2020-06-27 …
设数列{an}是首项为1的等比数列,若{1/[2an+a(n+1)]}是等差数列,则(1/2a1+ 2020-07-09 …
一个数列题如下,为何错了?在单调递增数列{an}中,a1=1,a2=2,且a2n-1,a2na2n+ 2020-12-24 …
设Sn是等差数列{an}的前n项和,已知1/3S3与1/4S4的等比中项为1/5S5,1/3S3与1 2021-01-13 …