早教吧作业答案频道 -->其他-->
(2013•苏州一模)如图(1),已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A、C分别在DG和DE上,连接AE、BG.(1)试猜想线段BG和AE的关系(位置关系及数量关
题目详情
(2013•苏州一模)如图(1),已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A、C分别在DG和DE上,连接AE、BG.
(1)试猜想线段BG和AE的关系(位置关系及数量关系),请直接写出你得到的结论:
(2)将正方形DEFG绕点D逆时针方向旋转一角度a后(0°<a<90°),如图(2),通过观察或测量等方法判断(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由:
(3)若BC=DE=m,正方形DEFG绕点D逆时针方向旋转角度a(0°<a<360°)过程中,当AE为最大值时,求AF的值.

(1)试猜想线段BG和AE的关系(位置关系及数量关系),请直接写出你得到的结论:
(2)将正方形DEFG绕点D逆时针方向旋转一角度a后(0°<a<90°),如图(2),通过观察或测量等方法判断(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由:
(3)若BC=DE=m,正方形DEFG绕点D逆时针方向旋转角度a(0°<a<360°)过程中,当AE为最大值时,求AF的值.

▼优质解答
答案和解析
(1)如图(1),
∵△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点,
∴BD=CD=AD,
∵在△BDG和△ADE中
,
∴△BDG≌△ADE(SAS),
∴BG=AE,∠DGB=∠DEA,
延长EA到BG于一点M,
∴∠GAM=∠DAE,
∴∠GMA=∠EDA=90°,
∴线段BG和AE相等且垂直;

(2)成立,
如图(2),延长EA分别交DG、BG于点M′、N′两点,
∵△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点,
∴∠ADB=90°,且BD=AD,
∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,
∵在△BDG和△ADE中
,
∴△BDG≌△ADE(SAS),
∴BG=AE,∠DEA=∠DGB,
∵∠DEA+∠DNE=90°,∠DNE=∠MNG,
∴∠MNG+∠DGM=90°,
即BG⊥AE且BG=AE;
(3)由(2)知,要使AE最大,只要将正方形绕点D逆时针旋旋转270°,即A,D,E在一条直线上时,AE最大;
∵正方形DEFG在绕点D旋转的过程中,E点运动的图形是以点D为圆心,DE为半径的圆,
∴当正方形DEFG旋转到G点位于BC的延长线上(即正方形DEFG绕点D逆时针方向旋转270°)时,BG最大,如图(3),
若BC=DE=m,则AD=
,EF=m,
在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=
m2,
∴AF=
m,即在正方形DEFG旋转过程中,当AE为最大值时,AF=
m.

∵△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点,
∴BD=CD=AD,
∵在△BDG和△ADE中
|
∴△BDG≌△ADE(SAS),
∴BG=AE,∠DGB=∠DEA,
延长EA到BG于一点M,
∴∠GAM=∠DAE,
∴∠GMA=∠EDA=90°,
∴线段BG和AE相等且垂直;

(2)成立,
如图(2),延长EA分别交DG、BG于点M′、N′两点,
∵△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点,
∴∠ADB=90°,且BD=AD,
∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,
∵在△BDG和△ADE中
|

∴△BDG≌△ADE(SAS),
∴BG=AE,∠DEA=∠DGB,
∵∠DEA+∠DNE=90°,∠DNE=∠MNG,
∴∠MNG+∠DGM=90°,
即BG⊥AE且BG=AE;
(3)由(2)知,要使AE最大,只要将正方形绕点D逆时针旋旋转270°,即A,D,E在一条直线上时,AE最大;
∵正方形DEFG在绕点D旋转的过程中,E点运动的图形是以点D为圆心,DE为半径的圆,
∴当正方形DEFG旋转到G点位于BC的延长线上(即正方形DEFG绕点D逆时针方向旋转270°)时,BG最大,如图(3),
若BC=DE=m,则AD=
m |
2 |
在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=
13 |
4 |
∴AF=
| ||
2 |
| ||
2 |
看了 (2013•苏州一模)如图(...的网友还看了以下:
小珍想出了一个测量池塘对岸的AB两点距离的办法,如图:先分别从池塘的两端A、B引两条直线AC、BC 2020-04-07 …
在正方形ABCD中,将∠ADC绕点D顺时针旋转一定角度,使角的一边与BC的交点为点F,且CF=12 2020-06-15 …
如图,张雨同学想出了一个测量池塘两端A、B长度的方法:过点A、B引两条直线AC、BC相交于点C,在 2020-06-17 …
小明为测量池塘的宽度,在池塘的两侧A,B分别引两条直线AC,BC,相交于点C,在BC上分别取点E, 2020-06-23 …
某密闭容器中进行如下反应:N2(g)+3H2(g)2NH3(g),若要使平衡时反应物总物质的量与生 2020-06-27 …
小明为测量池塘的宽度,在池塘的两侧A,B分别引两条直线AC,BC,相交于点C,在BC上分别取点E, 2020-07-09 …
小珍想出了一个测量池塘对岸的AB两点距离的办法,如图:先分别从池塘的两端A、B引两条直线AC、BC 2020-07-11 …
高等数学题:设映射f:X→Y,若存在一个映射g:Y→X,使g*f=I,f*g=J,其中I,J分别是 2020-07-30 …
高等数学题:设映射f:X→Y,若存在一个映射g:Y→X,使g*f=I,f*g=J,其中I,J分别是 2020-07-30 …
一条初三的物理问题气球下吊着一个盛有沙袋的吊篮(总重为G),气球以速度V匀速下降时,受到的空气浮力为 2020-11-01 …