早教吧作业答案频道 -->数学-->
如图,已知平行六面体ABCD-A1B1C1D1的底面ABCD上菱形,且∠C1CB=∠C1CD=∠BCD,(1)证明:C1C⊥BD;(2)当CDCC1的值为多少时,能使A1C⊥平面C1BD?请给出证明.
题目详情
如图,已知平行六面体ABCD-A1B1C1D1的底面ABCD上菱形,且∠C1CB=∠C1CD=∠BCD,

(1)证明:C1C⊥BD;
(2)当
的值为多少时,能使A1C⊥平面C1BD?请给出证明.

(1)证明:C1C⊥BD;
(2)当
CD |
CC1 |
▼优质解答
答案和解析
(1)证明:如图,连接A1C1、AC和BD交于O,连接C1O.

∵四边形ABCD是菱形,
∴AC⊥BD,BC=CD.
又∵∠BCC1=∠DCC1,C1C=C1C,
∴△C1BC≌△C1DC,
∴C1B=C1D,
∵DO=OB
∴C1O⊥BD,(3分)
但AC⊥BD,AC∩C1O=O,
∴BD⊥平面AC1,
又C1C⊂平面AC1,
∴C1C⊥BD.(6分)
(2)当
=1时,能使A1C⊥平面C1BD.
∵
=1,
∴BC=CD=C1C,
又∠BCD=∠C1CB=∠C1CD,
由此可推得BD=C1B=C1D.
∴三棱锥C-C1BD是正三棱锥.(9分)
设A1C与C1O相交于G.
∵A1C1∥AC,且A1C1:OC=2:1,
∴C1G:GO=2:1.
又C1O是正三角形C1BD的BD边上的高和中线,
∴点G是正三角形C1BD的中心,
∴CG⊥平面C1BD,
即A1C⊥平面C1BD.(12分)

∵四边形ABCD是菱形,
∴AC⊥BD,BC=CD.
又∵∠BCC1=∠DCC1,C1C=C1C,
∴△C1BC≌△C1DC,
∴C1B=C1D,
∵DO=OB
∴C1O⊥BD,(3分)
但AC⊥BD,AC∩C1O=O,
∴BD⊥平面AC1,
又C1C⊂平面AC1,
∴C1C⊥BD.(6分)
(2)当
CD |
CC1 |
∵
CD |
CC1 |
∴BC=CD=C1C,
又∠BCD=∠C1CB=∠C1CD,
由此可推得BD=C1B=C1D.
∴三棱锥C-C1BD是正三棱锥.(9分)
设A1C与C1O相交于G.
∵A1C1∥AC,且A1C1:OC=2:1,
∴C1G:GO=2:1.
又C1O是正三角形C1BD的BD边上的高和中线,
∴点G是正三角形C1BD的中心,
∴CG⊥平面C1BD,
即A1C⊥平面C1BD.(12分)
看了 如图,已知平行六面体ABCD...的网友还看了以下:
位于短周期的四种元素A,B,C,D,原子序数依次增大,已知A,C位于同一主族,A在周期表中原子半径 2020-04-08 …
现有A,B,C,D四种物质,已知A,B为黑色粉末,C,D为无色气体,A,B在高温下作用能生成D,A 2020-05-17 …
已知a:b=c:d(abcd都不为0),若将b扩大10倍,使比例不能成立的是()A.a扩已知a:b 2020-05-22 …
四边形ABCD全等于A'B'C'D',而且AB:BC:CD:DA=1:1/2:2/3:2,若四边形 2020-06-03 …
化简逻辑函数求大神1,化简逻辑函数Y=Aˊ(CDˊ+CˊD)+BCˊD+ACˊD+AˊCDˊY=A 2020-06-12 …
如果正数a,b,c,d满足a+b=cd=4,那么()A.ab≤c+d且等号成立时a,b,c,d的取 2020-07-09 …
如图,线段AB上两点C、D,AB=30cm,AC=10cm,BD=5cm,点P从A出发以每秒1cm的 2020-12-15 …
已知正数,a,b,c,d,c,e,f,都是正数,且bcdef/a=1/2,acdef/b=1/4,a 2020-12-23 …
若a与b互为相反数,c与d互为倒数,x=4(a-2)-(a-3b),y=c²d-(c-1),求代数式 2020-12-31 …
若a与b互为相反数,c与d互为倒数,x=4(a-2)-(a-3b),y=c²d-(c-1),求代数式 2020-12-31 …