早教吧 育儿知识 作业答案 考试题库 百科 知识分享

过圆x²+y²=16内一点P(2,2)作两条互相垂直的弦AB与CD,求圆内接四边形ABCD的面积的最大值

题目详情
过圆x²+y²=16内一点P(2,2)作两条互相垂直的弦AB与CD,求圆内接四边形ABCD的面积的最大值
▼优质解答
答案和解析
三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理
判别式
b2-4ac=0 注:方程有两个相等的实根
b2-4ac>0 注:方程有两个不等的实根
b2-4ac
看了 过圆x²+y²=16内一点P...的网友还看了以下:

两个平面互相垂直,下列说法中正确的是()A.一个平面内的任一条直线必垂直于另一个平面B.分别在这两  2020-05-13 …

已知三个命题:①两个平面垂直,过其中一个平面内一点,作与它们交线垂直的直线,必垂直于另一个平面;②  2020-05-13 …

在互相垂直的两个平面中,下列命题中:①一个平面内的已知直线必垂直于另一个平面内的任意一条直线;②一  2020-05-13 …

求证1如果三条共线直线两辆互相垂直,那么他们中每两条直线确定的平面也两两互相垂直2如果平面a和不在  2020-05-13 …

设a、b是两个不同的平面,给出下列命题:①若平面a内的直线l垂直于平面b内的任意直线,则a⊥b②若  2020-05-13 …

三条直线两两垂直,则下列结论正确的是()(1)三线必交于一点(2)其中必有两条异面(3)三条线不可  2020-06-15 …

下列有四个结论:1:两条直线都和同一个平面平行,则这两条直线平行;2:两条直线没有公共点,则这两条  2020-06-22 …

我们知道,在同一平面内两条直线相交只有一个交点,三条直线两两相交最少一个交点.(1)同一平面内的四  2020-07-21 …

几何证明两平面垂直的定理~如果一个平面内的两条相交直线分别和另一个平面内的两条相交直线垂直则两个平  2020-08-02 …

面面平行推论;一个平面内两条相交直线分别平行于另一平面内两条相交直线,两平面平行如果一个平面内的两条  2020-12-23 …