早教吧作业答案频道 -->其他-->
(2014•平顶山二模)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)探究:线段OE与OF的数量关系并加以证明;(2)当点
题目详情

(1)探究:线段OE与OF的数量关系并加以证明;
(2)当点O运动到何处时,且△ABC满足什么条件时,四边形AECF是正方形?
(3)当点O在边AC上运动时,四边形BCFE______是菱形吗?(填“可能”或“不可能”)
▼优质解答
答案和解析
(1)OE=OF.理由如下:
∵CE是∠ACB的角平分线,
∴∠ACE=∠BCE,
又∵MN∥BC,
∴∠NEC=∠ECB,
∴∠NEC=∠ACE,
∴OE=OC,
∵OF是∠BCA的外角平分线,
∴∠OCF=∠FCD,
又∵MN∥BC,
∴∠OFC=∠ECD,
∴∠OFC=∠COF,
∴OF=OC,
∴OE=OF;
(2)当点O运动到AC的中点,且△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.理由如下:
∵当点O运动到AC的中点时,AO=CO,
又∵EO=FO,
∴四边形AECF是平行四边形,
∵FO=CO,
∴AO=CO=EO=FO,
∴AO+CO=EO+FO,即AC=EF,
∴四边形AECF是矩形.
已知MN∥BC,当∠ACB=90°,则
∠AOF=∠COE=∠COF=∠AOE=90°,
∴AC⊥EF,
∴四边形AECF是正方形;
(3)不可能.理由如下:
如图,∵CE平分∠ACB,CF平分∠ACD,
∴∠ECF=
∠ACB+
∠ACD=
(∠ACB+∠ACD)=90°,
若四边形BCFE是菱形,则BF⊥EC,
但在△GFC中,不可能存在两个角为90°,所以不存在其为菱形.
故答案为不可能.

∵CE是∠ACB的角平分线,
∴∠ACE=∠BCE,
又∵MN∥BC,
∴∠NEC=∠ECB,
∴∠NEC=∠ACE,
∴OE=OC,
∵OF是∠BCA的外角平分线,
∴∠OCF=∠FCD,
又∵MN∥BC,
∴∠OFC=∠ECD,
∴∠OFC=∠COF,
∴OF=OC,
∴OE=OF;
(2)当点O运动到AC的中点,且△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.理由如下:
∵当点O运动到AC的中点时,AO=CO,
又∵EO=FO,
∴四边形AECF是平行四边形,
∵FO=CO,
∴AO=CO=EO=FO,
∴AO+CO=EO+FO,即AC=EF,
∴四边形AECF是矩形.
已知MN∥BC,当∠ACB=90°,则
∠AOF=∠COE=∠COF=∠AOE=90°,
∴AC⊥EF,
∴四边形AECF是正方形;

如图,∵CE平分∠ACB,CF平分∠ACD,
∴∠ECF=
1 |
2 |
1 |
2 |
1 |
2 |
若四边形BCFE是菱形,则BF⊥EC,
但在△GFC中,不可能存在两个角为90°,所以不存在其为菱形.
故答案为不可能.
看了 (2014•平顶山二模)如图...的网友还看了以下:
如图①,现有长度分别为a、b、1的三条线段.加、减图②所示为长为a+b的线段,请用尺规作出长为a- 2020-06-11 …
如图表示细胞周期,下列叙述不正确的是()A.将癌细胞的细胞周期阻断在b→a段可以抑制癌细胞增殖B. 2020-07-01 …
按下列要求画出图形.(1)直线AB外有一点C.(2)点C,D是线段AB的三等分点.(3)直线AB, 2020-08-01 …
几何题,单选题,只提交答案.不需要附件.例如:1.A2.B......1.当直线平行于某投影面时, 2020-08-02 …
已知向量a及表示该向量的有向线段的始点A的坐标,求他的重点B的坐标1a=(-2,1)A(0,0)2 2020-08-02 …
填空题)已知线段a,b(a>b),用直尺和圆规画出线段c,使它等于2a-b.(只写出作法)条件:线段 2020-11-06 …
读黄河干流部分河段水质状况图,判断29~30题.B附近河段的水质要好于A附近河段,可能原因之一是() 2020-11-17 …
如图,B是线段AD上一动点,沿A➡D➡A以2cm\s的速度往返一次,C是线段AB的中点,AD=10, 2020-12-09 …
M河段与N河段降水量的差异和主要原因分别是()A.M河段大于N河段M受西风影响,降水多B.M河段大于 2020-12-27 …
关于各阶段人口特征描述正确的是()A.A阶段老龄化严重,城市化水平下降B.B阶段出现高出生率的原因是 2021-01-14 …