早教吧作业答案频道 -->数学-->
如图(1),BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别为F、G,连结FG,延长AF、AG,与直线BC相交.(1)求证:FG=(AB+BC+AC)(2)若BD、CE分别是△ABC的内角平分线,如图(2);BD为
题目详情
如图(1),BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别为F、G,连结FG,延长AF、AG,与直线BC相交.
(1)求证:FG= (AB+BC+AC)
(2)若BD、CE分别是△ABC的内角平分线,如图(2);BD为△ABC的内角平分线,CE为△ABC的外角平分线,如图(3),则在图(2)、图(3)两种情况下,线段FG与△ABC三边又有怎样的数量关系?请写出你的猜想,并对其中的一种情况说明理由.
(1)求证:FG= (AB+BC+AC)
(2)若BD、CE分别是△ABC的内角平分线,如图(2);BD为△ABC的内角平分线,CE为△ABC的外角平分线,如图(3),则在图(2)、图(3)两种情况下,线段FG与△ABC三边又有怎样的数量关系?请写出你的猜想,并对其中的一种情况说明理由.
▼优质解答
答案和解析
延长AF,AG与直线BC相交于M、N,
1.三角形ABM中,BF垂直AM,BF平分角ABM,
三角形ABM等到腰,AB=BM,F是AB中点,
同理,在三角形ACN中AC=CN,G是AN中点,
GF是三角形ANM中位线,
GF=1/2(MN)
=1/2(BM+BC+CN)
=1/2(AB+BC+CA)
2.
FG=1/2(AC+AB-BC).
当AB边最长,
在三角形ACN中,AC=CN,G是AN中点,
在三角形ABM中,AB=BM,F是AM中点,
MN=CN+CM=AC+(BM-BC)=AC+AB-BC,
当BC>AB>AC时,
MN=BM-BN=AB-BN=AB-(BC-AC)=AB+BC-AC,
FG=1/2MN=1/2(AC+AB-BC).
1.三角形ABM中,BF垂直AM,BF平分角ABM,
三角形ABM等到腰,AB=BM,F是AB中点,
同理,在三角形ACN中AC=CN,G是AN中点,
GF是三角形ANM中位线,
GF=1/2(MN)
=1/2(BM+BC+CN)
=1/2(AB+BC+CA)
2.
FG=1/2(AC+AB-BC).
当AB边最长,
在三角形ACN中,AC=CN,G是AN中点,
在三角形ABM中,AB=BM,F是AM中点,
MN=CN+CM=AC+(BM-BC)=AC+AB-BC,
当BC>AB>AC时,
MN=BM-BN=AB-BN=AB-(BC-AC)=AB+BC-AC,
FG=1/2MN=1/2(AC+AB-BC).
看了 如图(1),BD、CE分别是...的网友还看了以下:
焓变条件是不做非体积功,而做了非体积功,何来焓变化学反应A(g)+B(g)=2C(g),A、B 、 2020-05-17 …
直线y=-2x+8与两坐标轴分别交于p,q两点在线段上有一点A,过A分别作两坐标轴的垂线,垂足分别 2020-06-03 …
在△ABC中,AD是中线,O为AD的中点,直线a过点O,过A、B、C三点分别作直线a的垂线,垂足分 2020-06-22 …
如图,BM、CN分别平分△ABC的外角∠ABD、∠ACE,过A分别作BM、CN的垂线,垂足分别为M 2020-07-27 …
如图在△ABC中,过A分别作∠ABC,∠ACB的角平分线的垂线,AD、AE、DE为垂足,已知AB= 2020-07-30 …
在直二面角α-l-β的棱l上取一点A、过A分别在α,β内A的同侧作与l成45°的直线,则这两条直线 2020-08-02 …
(2/3)E是角ACB的外角平分线,同样过A点分别作BD和CE的垂线,垂足为F,G;请问在(1), 2020-08-03 …
某实验小组用如图所示的实验装置来验证楞次定律.当条形磁铁自上而下穿过线圈时,通过电流计的感应电流方向 2020-11-01 …
已知等边三角形纸片ABC的边长为8,D为AB边上的点,过点D作DG∥BC交AC于点G.DE⊥BC于点 2020-11-07 …
如图。已知AD是△ABC的边BC上的中线,G是△ABC的重心。EF过点G且平行于BC,分别交AB、A 2020-12-02 …