早教吧作业答案频道 -->其他-->
如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)探究:线段OE与OF的数量关系并加以证明;(2)当点O运动到何处,且△ABC
题目详情
如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠B
CA的外角平分线于点F.
(1)探究:线段OE与OF的数量关系并加以证明;
(2)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?
(3)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明,若不是,则说明理由.
CA的外角平分线于点F.(1)探究:线段OE与OF的数量关系并加以证明;
(2)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?
(3)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明,若不是,则说明理由.
▼优质解答
答案和解析
(1)OE=OF.理由如下:
∵CE是∠ACB的角平分线,
∴∠ACE=∠BCE,
又∵MN∥BC,
∴∠NEC=∠ECB,
∴∠NEC=∠ACE,
∴OE=OC,
∵CF是∠BCA的外角平分线,
∴∠OCF=∠FCD,
又∵MN∥BC,
∴∠OFC=∠ECD,
∴∠OFC=∠COF,
∴OF=OC,
∴OE=OF;
(2)△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.
∵当点O运动到AC的中点时,AO=CO,
又∵EO=FO,
∴四边形AECF是平行四边形,
∵FO=CO,
∴AO=CO=EO=FO,
∴AO+CO=EO+FO,即AC=EF,
∴四边形AECF是矩形.
已知MN∥BC,当∠ACB=90°,则
∠AOF=∠COE=∠COF=∠AOE=90°,
∴AC⊥EF,
∴四边形AECF是正方形.
(3)不可能.
如图所示,
∵CE平分∠ACB,CF平分∠ACD,
∴∠ECF=
∠ACB+
∠ACD=
(∠ACB+∠ACD)=90°,
若四边形BCFE是菱形,则BF⊥EC,
但在△GFC中,不可能存在两个角为90°,所以不存在其为菱形.
(1)OE=OF.理由如下:∵CE是∠ACB的角平分线,
∴∠ACE=∠BCE,
又∵MN∥BC,
∴∠NEC=∠ECB,
∴∠NEC=∠ACE,
∴OE=OC,
∵CF是∠BCA的外角平分线,
∴∠OCF=∠FCD,
又∵MN∥BC,
∴∠OFC=∠ECD,
∴∠OFC=∠COF,
∴OF=OC,
∴OE=OF;
(2)△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.
∵当点O运动到AC的中点时,AO=CO,
又∵EO=FO,
∴四边形AECF是平行四边形,
∵FO=CO,
∴AO=CO=EO=FO,
∴AO+CO=EO+FO,即AC=EF,
∴四边形AECF是矩形.
已知MN∥BC,当∠ACB=90°,则
∠AOF=∠COE=∠COF=∠AOE=90°,
∴AC⊥EF,
∴四边形AECF是正方形.

(3)不可能.
如图所示,
∵CE平分∠ACB,CF平分∠ACD,
∴∠ECF=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
若四边形BCFE是菱形,则BF⊥EC,
但在△GFC中,不可能存在两个角为90°,所以不存在其为菱形.
看了 如图,△ABC中,点O是边A...的网友还看了以下:
求:函数f(x)是什么意思?“非常白话类型的”f()有何作用?函数f(x)是什么意思?解题时具体该 2020-05-15 …
JTGF80/1-2004当中的F是什么意思啊求大神帮助 2020-05-15 …
已知函数f(x)对任意实数x,y满足f(x)+f(y)=f(x+y)+2,当x>0,f(x)>2, 2020-05-16 …
高中物理当F大于Fmax时Ff怎么求当拉力F在0到Fmax时F与静摩擦力成正比,当F等于Fmax时 2020-06-12 …
f(x)是实数集R上的奇函数,且当x>0,f(X)=log2 (x+1)实数集R上的奇函数,且当x 2020-06-27 …
离散数学单射函数的定义问题书中对单射函数的定义是这样的:函数f称为一对一的或单射的,当且仅当对于f 2020-07-16 …
设函数f(x)在R+上有界且可导,则()A.当limx→+∞f(x)=0时,必有limx→+∞f′ 2020-07-31 …
请问物理当中字母F到底可以等于什么物理量在P=FV当中F可以=mg?F不是=ma或uFn的么?F可以 2020-11-21 …
在菱形ABCD中AB=4,在菱形ABCD中,AB=4,∠BAD等于θ,△AEF为正三角形,E,F在菱 2020-12-23 …
物理中物距与像距的关系凸透镜成像物距u与像距v的关系,f为一倍焦距,2f为两倍焦距答题格式当u>2f 2021-01-09 …