早教吧作业答案频道 -->其他-->
如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)探究:线段OE与OF的数量关系并加以证明;(2)当点O运动到何处,且△ABC
题目详情
如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠B
CA的外角平分线于点F.
(1)探究:线段OE与OF的数量关系并加以证明;
(2)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?
(3)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明,若不是,则说明理由.
CA的外角平分线于点F.(1)探究:线段OE与OF的数量关系并加以证明;
(2)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?
(3)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明,若不是,则说明理由.
▼优质解答
答案和解析
(1)OE=OF.理由如下:
∵CE是∠ACB的角平分线,
∴∠ACE=∠BCE,
又∵MN∥BC,
∴∠NEC=∠ECB,
∴∠NEC=∠ACE,
∴OE=OC,
∵CF是∠BCA的外角平分线,
∴∠OCF=∠FCD,
又∵MN∥BC,
∴∠OFC=∠ECD,
∴∠OFC=∠COF,
∴OF=OC,
∴OE=OF;
(2)△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.
∵当点O运动到AC的中点时,AO=CO,
又∵EO=FO,
∴四边形AECF是平行四边形,
∵FO=CO,
∴AO=CO=EO=FO,
∴AO+CO=EO+FO,即AC=EF,
∴四边形AECF是矩形.
已知MN∥BC,当∠ACB=90°,则
∠AOF=∠COE=∠COF=∠AOE=90°,
∴AC⊥EF,
∴四边形AECF是正方形.
(3)不可能.
如图所示,
∵CE平分∠ACB,CF平分∠ACD,
∴∠ECF=
∠ACB+
∠ACD=
(∠ACB+∠ACD)=90°,
若四边形BCFE是菱形,则BF⊥EC,
但在△GFC中,不可能存在两个角为90°,所以不存在其为菱形.
(1)OE=OF.理由如下:∵CE是∠ACB的角平分线,
∴∠ACE=∠BCE,
又∵MN∥BC,
∴∠NEC=∠ECB,
∴∠NEC=∠ACE,
∴OE=OC,
∵CF是∠BCA的外角平分线,
∴∠OCF=∠FCD,
又∵MN∥BC,
∴∠OFC=∠ECD,
∴∠OFC=∠COF,
∴OF=OC,
∴OE=OF;
(2)△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.
∵当点O运动到AC的中点时,AO=CO,
又∵EO=FO,
∴四边形AECF是平行四边形,
∵FO=CO,
∴AO=CO=EO=FO,
∴AO+CO=EO+FO,即AC=EF,
∴四边形AECF是矩形.
已知MN∥BC,当∠ACB=90°,则
∠AOF=∠COE=∠COF=∠AOE=90°,
∴AC⊥EF,
∴四边形AECF是正方形.

(3)不可能.
如图所示,
∵CE平分∠ACB,CF平分∠ACD,
∴∠ECF=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
若四边形BCFE是菱形,则BF⊥EC,
但在△GFC中,不可能存在两个角为90°,所以不存在其为菱形.
看了 如图,△ABC中,点O是边A...的网友还看了以下:
设函数f(x)=x+a/x定义域为(0,+∞),且f(2)=5/2.设点P是函数图像上的任意一点, 2020-05-12 …
设在数据库应用系统设计与实现过程中有下列活动:Ⅰ.数据库逻辑结构设计Ⅱ.数据库事务概要设计Ⅲ.应 2020-05-23 …
数据库设计过程中有如下工作:1.文件组织与存取设计Ⅱ.数据分布设计Ⅲ.确定数据库和操作系统参数Ⅳ. 2020-05-23 …
在设计合作控制电路时,k1和k2是指纹开关,当两开关都闭合时,电动机M才能启动,此控制电路是如图1 2020-06-30 …
一道参数法求轨迹方程题设圆C:(x-1)^2+y^2=1,过原点O作圆的任意弦,求所作弦的中点的轨 2020-07-30 …
设函数f(x),g(x)具有连续的二阶导数,证明函数u=f(sat)g(s-at)满足波动方程a2 2020-08-02 …
设计带式运输机传动装置中的一级圆柱齿轮减速器原始数据,运输带工作拉力F=1.0KN运输带工作速度V= 2020-11-28 …
课程设计:搅拌机传动装置设计——两级展开式圆柱齿轮减速器工作条件:双螺旋搅拌机单向转动,工作中载荷有 2020-12-03 …
英语翻译作为设计师应不断关注不同消费群体的消费心理动向,围绕消费群体进行适度的设计,创作出能够满足审 2020-12-15 …
安徽省委书记张宝顺推进皖江城市带承接产业转移示范区建设动员大会上强调指出,示范区建设具有探索意义的创 2020-12-18 …