早教吧作业答案频道 -->其他-->
如图所示,在平面直角坐标系中,A点坐标为(-2,2).(1)如图(1),在△ABO为等腰直角三角形,求B点坐标.(2)如图(1),在(1)的条件下,分别以AB和OB为边作等边△ABC和等边△OBD
题目详情
如图所示,在平面直角坐标系中,A点坐标为(-2,2).
(1)如图(1),在△ABO为等腰直角三角形,求B点坐标.
(2)如图(1),在(1)的条件下,分别以AB和OB为边作等边△ABC和等边△OBD,连结OC,求∠COB的度数.
(3)如图(2),过点A作AM⊥y轴于点M,点E为x轴正半轴上一点,K为ME延长线上一点,以MK为直角边作等腰直角三角形MKJ,∠MKJ=90°,过点A作AN⊥x轴交MJ于点N,连结EN.则①
的值不变;②
的值不变,其中有且只有一个结论正确,请判断出正确的结论,并加以证明和求出其值.

(1)如图(1),在△ABO为等腰直角三角形,求B点坐标.
(2)如图(1),在(1)的条件下,分别以AB和OB为边作等边△ABC和等边△OBD,连结OC,求∠COB的度数.
(3)如图(2),过点A作AM⊥y轴于点M,点E为x轴正半轴上一点,K为ME延长线上一点,以MK为直角边作等腰直角三角形MKJ,∠MKJ=90°,过点A作AN⊥x轴交MJ于点N,连结EN.则①
AN+OE |
NE |
AN−OE |
NE |

▼优质解答
答案和解析
(1)如图1,作AE⊥OB于点E,
∴∠AEO=90°.
∵A(-2,2).
∴OE=AE=2.
∵AB=AO,
∴BO=2EO=4.
∴B(-4,0);
(2)∵△ABO为等腰直角三角形,
∴AB=AO,∠BAO=90°,∠AOB=45°.
∵△ABC是等边三角形,
∴∠BAC=60°,AC=AB,
∴∠CAO=150°,AC=AO,
∴∠ACO=∠AOC=15°,
∴∠COB=45°-15°=30°;
(3)
的值不变
理由:如图2,在AN上取一点P,使AP=OE,
∵AM⊥y轴,AN⊥x轴,
∴∠AQO=∠AMO=90°.
∵∠MOQ=90°,
∴四边形AMOQ是矩形.
∵A(-2,2),
∴AQ=OQ=2,
∴四边形AMOQ是正方形,
∴∠A=∠MOE=∠AMO=90°,AM=OM.
在△APM和△OEM中,
,
∴△APM≌△OEM(SAS),
∴MP=ME,∠AMP=∠OME.
∵∠AMP+∠PMO=90°,
∴∠OME+∠PMO=90°,
即∠PME=90°.
∵△MKJ等腰直角三角形,
∴∠JMK=45°,
∴∠PMN=45°,
∴∠PMN=∠EMN.
在△PMN和△EMN中,
,
∴△PMN≌△EMN(SAS),
∴PN=EN.
∵PN=AN-AP,
∴PN=AN-0E,
∴AN-OE=EN.
∴
=1
∴∠AEO=90°.
∵A(-2,2).
∴OE=AE=2.
∵AB=AO,
∴BO=2EO=4.
∴B(-4,0);
(2)∵△ABO为等腰直角三角形,
∴AB=AO,∠BAO=90°,∠AOB=45°.
∵△ABC是等边三角形,
∴∠BAC=60°,AC=AB,
∴∠CAO=150°,AC=AO,
∴∠ACO=∠AOC=15°,
∴∠COB=45°-15°=30°;
(3)
AN−OE |
NE |
理由:如图2,在AN上取一点P,使AP=OE,
∵AM⊥y轴,AN⊥x轴,
∴∠AQO=∠AMO=90°.
∵∠MOQ=90°,
∴四边形AMOQ是矩形.
∵A(-2,2),
∴AQ=OQ=2,
∴四边形AMOQ是正方形,
∴∠A=∠MOE=∠AMO=90°,AM=OM.
在△APM和△OEM中,
|
∴△APM≌△OEM(SAS),
∴MP=ME,∠AMP=∠OME.
∵∠AMP+∠PMO=90°,
∴∠OME+∠PMO=90°,
即∠PME=90°.
∵△MKJ等腰直角三角形,
∴∠JMK=45°,
∴∠PMN=45°,
∴∠PMN=∠EMN.
在△PMN和△EMN中,
|
∴△PMN≌△EMN(SAS),
∴PN=EN.
∵PN=AN-AP,
∴PN=AN-0E,
∴AN-OE=EN.
∴
AN−OE |
NE |

看了 如图所示,在平面直角坐标系中...的网友还看了以下:
(1)若a=log23+1,b=log214-1,则ab的大小关系(2)比较a3+a2b和b3+b 2020-05-13 …
下面只要是出现在中括号中的数字,字母都是前面字母或数字的次方啊!1.若-2ax[2]y[b-1]是 2020-05-22 …
如图,已知反比例函数y=k1/x的图像与一次函数y=k2x+b的图像交于A,B两点A(2,n),B 2020-06-04 …
在平面直角坐标系中描出一下各点A(-2,0)B(-1,3)C(2,2)D(在平面直角坐标系中描出一 2020-06-25 …
数学填空在直角坐标系中,A(2,3),B(1,0),P是Y轴上一动点.在直角坐标系中,A(2,3) 2020-07-13 …
设A={(x,y)||x+1|+(y-2)^2=0},B={-1,0,1,2},则两个集合的关系是 2020-07-30 …
初二数学高手入座非诚勿扰1.已知2x^2m-n*y^2与3xy^m+n的和是单项式,则m=[],n 2020-07-31 …
一道简单的离散数学问题设集合A={1,2,3},B={1,2},则A上的等价关系有个,B上的等价关 2020-08-02 …
已知函数Y=-KX+4与Y=K/X的图象有两个不同的交点,且A(-1/2,Y1),B(-1,Y2), 2020-11-01 …
包含于和真包含于暑假自学不知对不对A={1,2,3}B={1,2,3,4}C={1,2,3,4}A真 2020-12-02 …