早教吧作业答案频道 -->其他-->
如图1,△ABC是等边三角形,点E在AC边上,点D是BC边上的一个动点,以DE为边作等边△DEF,连接CF.(1)当点D与点B重合时,如图2,求证:CE+CF=CD;(2)当点D运动到如图3的位置时,猜想CE、CF
题目详情
如图1,△ABC是等边三角形,点E在AC边上,点D是BC边上的一个动点,以DE为边作等边△DEF,连接CF.
(1)当点D与点B重合时,如图2,求证:CE+CF=CD;
(2)当点D运动到如图3的位置时,猜想CE、CF、CD之间的等量关系,并说明理由;
(3)只将条件“点D是BC边上的一个动点”改为“点D是BC延长线上的一个动点”,如图4,猜想CE、CF、CD之间的等量关系为______(不必证明).

(1)当点D与点B重合时,如图2,求证:CE+CF=CD;
(2)当点D运动到如图3的位置时,猜想CE、CF、CD之间的等量关系,并说明理由;
(3)只将条件“点D是BC边上的一个动点”改为“点D是BC延长线上的一个动点”,如图4,猜想CE、CF、CD之间的等量关系为______(不必证明).

▼优质解答
答案和解析
(1)证明:如图2:
∵△ABC与△BEF都为等边三角形,
∴∠ABC=∠EBF=60°,AB=BC=CD,EB=BF,
∴∠ABC-∠EBC=∠EBF-∠EBC,即∠ABE=∠CBF,
在△ABE和△CBF中,
,
∴△ABE≌△CBF(SAS),
∴AE=CF,
则CD=AC=AE+EC=FC+EC;
(2)CE=CF+CD,理由为:
证明:过D作DG∥AB,交AC于点G,连接CF,

∵DG∥AB,
∴∠CGD=∠CDG=60°,△CDG为等边三角形,
∵△DEF为等边三角形,
∴∠EDF=∠GDC=60°,ED=FD,GD=CD,
∴∠EDF-∠GDF=∠GDC-∠GDF,即∠EDG=∠FDC,
在△EDG和△FDC中,
,
∴△EDG≌△FDC(SAS),
∴EG=FC,
则CE=CG+EG=CG+CF=CF+CD;
(3)CF=CE+CD,理由为:
证明:过D作DG∥AC,交FC于点G,

∵GD∥AC,
∴∠GCD=∠DGC=60°,即△GCD为等边三角形,
∵△EDF为等边三角形,
∴∠EDF=∠GDC=60°,
∴∠EDF-∠DEG=∠GDC-∠EDG,即∠FDG=∠EDC,
在△ECD和△FGD中,
,
∴△ECD≌△FGD(SAS),
∴EC=FG,
则FC=FG+GC=EC+CD.
故答案为:(3)CF=CE+CD.
∵△ABC与△BEF都为等边三角形,
∴∠ABC=∠EBF=60°,AB=BC=CD,EB=BF,
∴∠ABC-∠EBC=∠EBF-∠EBC,即∠ABE=∠CBF,
在△ABE和△CBF中,
|
∴△ABE≌△CBF(SAS),
∴AE=CF,
则CD=AC=AE+EC=FC+EC;
(2)CE=CF+CD,理由为:
证明:过D作DG∥AB,交AC于点G,连接CF,

∵DG∥AB,
∴∠CGD=∠CDG=60°,△CDG为等边三角形,
∵△DEF为等边三角形,
∴∠EDF=∠GDC=60°,ED=FD,GD=CD,
∴∠EDF-∠GDF=∠GDC-∠GDF,即∠EDG=∠FDC,
在△EDG和△FDC中,
|
∴△EDG≌△FDC(SAS),
∴EG=FC,
则CE=CG+EG=CG+CF=CF+CD;
(3)CF=CE+CD,理由为:
证明:过D作DG∥AC,交FC于点G,

∵GD∥AC,
∴∠GCD=∠DGC=60°,即△GCD为等边三角形,
∵△EDF为等边三角形,
∴∠EDF=∠GDC=60°,
∴∠EDF-∠DEG=∠GDC-∠EDG,即∠FDG=∠EDC,
在△ECD和△FGD中,
|
∴△ECD≌△FGD(SAS),
∴EC=FG,
则FC=FG+GC=EC+CD.
故答案为:(3)CF=CE+CD.
看了 如图1,△ABC是等边三角形...的网友还看了以下:
如图,在四边形ABCD中,AB=DC,E、F分别是AD、BC的中点,G、H分别是BD、AC的中点, 2020-06-06 …
如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点.将一块锐角为45°的直角 2020-06-13 …
疯狂猜图34答案疯狂猜图34题,棕色背景,然后中间有个横杆上有很多字母,电影或电视,猜五个字,实在 2020-06-19 …
题目是这样的一共有10个数字由0到9我随机写写下4个数字你可以猜6次在你问的期间里我回答你猜对几个 2020-06-27 …
如图,在△ABC中,∠1=∠2,∠3=∠B,FG⊥AB于G,猜想CD与AB的位置关系,并证明你的猜 2020-06-27 …
如图,在▱ABCD中,已知AD>AB.(1)实践与操作:作∠BAD的平分线交BC于点E,在AD上截 2020-06-30 …
(2013•大兴区二模)已知:如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的 2020-07-09 …
如图,在△ABC中,已知AD平分∠BAC,E是边AB上的一点,AE=AC,F是边AC上的一点,联结 2020-07-09 …
如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点.将一块锐角为45°的直角 2020-07-22 …
如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点.将一块锐角为45°的直角 2020-07-22 …