早教吧作业答案频道 -->其他-->
如图1,△ABC是等边三角形,点E在AC边上,点D是BC边上的一个动点,以DE为边作等边△DEF,连接CF.(1)当点D与点B重合时,如图2,求证:CE+CF=CD;(2)当点D运动到如图3的位置时,猜想CE、CF
题目详情
如图1,△ABC是等边三角形,点E在AC边上,点D是BC边上的一个动点,以DE为边作等边△DEF,连接CF.
(1)当点D与点B重合时,如图2,求证:CE+CF=CD;
(2)当点D运动到如图3的位置时,猜想CE、CF、CD之间的等量关系,并说明理由;
(3)只将条件“点D是BC边上的一个动点”改为“点D是BC延长线上的一个动点”,如图4,猜想CE、CF、CD之间的等量关系为______(不必证明).

(1)当点D与点B重合时,如图2,求证:CE+CF=CD;
(2)当点D运动到如图3的位置时,猜想CE、CF、CD之间的等量关系,并说明理由;
(3)只将条件“点D是BC边上的一个动点”改为“点D是BC延长线上的一个动点”,如图4,猜想CE、CF、CD之间的等量关系为______(不必证明).

▼优质解答
答案和解析
(1)证明:如图2:
∵△ABC与△BEF都为等边三角形,
∴∠ABC=∠EBF=60°,AB=BC=CD,EB=BF,
∴∠ABC-∠EBC=∠EBF-∠EBC,即∠ABE=∠CBF,
在△ABE和△CBF中,
,
∴△ABE≌△CBF(SAS),
∴AE=CF,
则CD=AC=AE+EC=FC+EC;
(2)CE=CF+CD,理由为:
证明:过D作DG∥AB,交AC于点G,连接CF,

∵DG∥AB,
∴∠CGD=∠CDG=60°,△CDG为等边三角形,
∵△DEF为等边三角形,
∴∠EDF=∠GDC=60°,ED=FD,GD=CD,
∴∠EDF-∠GDF=∠GDC-∠GDF,即∠EDG=∠FDC,
在△EDG和△FDC中,
,
∴△EDG≌△FDC(SAS),
∴EG=FC,
则CE=CG+EG=CG+CF=CF+CD;
(3)CF=CE+CD,理由为:
证明:过D作DG∥AC,交FC于点G,

∵GD∥AC,
∴∠GCD=∠DGC=60°,即△GCD为等边三角形,
∵△EDF为等边三角形,
∴∠EDF=∠GDC=60°,
∴∠EDF-∠DEG=∠GDC-∠EDG,即∠FDG=∠EDC,
在△ECD和△FGD中,
,
∴△ECD≌△FGD(SAS),
∴EC=FG,
则FC=FG+GC=EC+CD.
故答案为:(3)CF=CE+CD.
∵△ABC与△BEF都为等边三角形,
∴∠ABC=∠EBF=60°,AB=BC=CD,EB=BF,
∴∠ABC-∠EBC=∠EBF-∠EBC,即∠ABE=∠CBF,
在△ABE和△CBF中,
|
∴△ABE≌△CBF(SAS),
∴AE=CF,
则CD=AC=AE+EC=FC+EC;
(2)CE=CF+CD,理由为:
证明:过D作DG∥AB,交AC于点G,连接CF,

∵DG∥AB,
∴∠CGD=∠CDG=60°,△CDG为等边三角形,
∵△DEF为等边三角形,
∴∠EDF=∠GDC=60°,ED=FD,GD=CD,
∴∠EDF-∠GDF=∠GDC-∠GDF,即∠EDG=∠FDC,
在△EDG和△FDC中,
|
∴△EDG≌△FDC(SAS),
∴EG=FC,
则CE=CG+EG=CG+CF=CF+CD;
(3)CF=CE+CD,理由为:
证明:过D作DG∥AC,交FC于点G,

∵GD∥AC,
∴∠GCD=∠DGC=60°,即△GCD为等边三角形,
∵△EDF为等边三角形,
∴∠EDF=∠GDC=60°,
∴∠EDF-∠DEG=∠GDC-∠EDG,即∠FDG=∠EDC,
在△ECD和△FGD中,
|
∴△ECD≌△FGD(SAS),
∴EC=FG,
则FC=FG+GC=EC+CD.
故答案为:(3)CF=CE+CD.
看了 如图1,△ABC是等边三角形...的网友还看了以下:
如图,在平行四边形ABCD中,点E,F在AC上,且AE=CF.如图,在平行四边形ABCD中,点E、 2020-05-16 …
如图,在正方形ABCD中,E为CD边上一点,以CE为对角线构造正方形CMEN,点N在正方形ABCD 2020-05-17 …
(如图)ABCD是一个长方形.三角形ADE比三角形CEF的面积小10平方米.问CF的长是多少厘米? 2020-06-03 …
(2014•天桥区一模)如图1,正方形OABC与正方形ODEF放置在直线l上,连结AD、CF,此时 2020-06-12 …
(2014•怀柔区一模)如图,在平行四边形ABCD中,∠ABC=45°,E、F分别在CD和BC的延 2020-06-18 …
四边形ABCD中,∠B=∠D=90°,∠BAD和∠BCD的内(或外)角平分线分别为AE和CF.(1 2020-07-17 …
如图,已知:AD∥BC,AD=CB,AE=CF.求证:∠D=∠B.证明:∵AD∥BC,∴∠A=∠( 2020-07-29 …
在一张薄纸上画△ABC及其两个外角(如图),用折纸的方法分别折出∠BAD和∠ABE的平分线,设两条 2020-07-30 …
谁能给我一个cf挑战绝命之谷每一开门的关数,和开门后里面都有什么,比如武器.怪,每一关的,给个详细的 2020-11-22 …
一定量的锎(Cf)是医学上常用作治疗恶性肿瘤的中子源,1mg(Cf)每秒约放出2.34×199个中子 2020-12-14 …