早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图1,△ABC是等边三角形,点E在AC边上,点D是BC边上的一个动点,以DE为边作等边△DEF,连接CF.(1)当点D与点B重合时,如图2,求证:CE+CF=CD;(2)当点D运动到如图3的位置时,猜想CE、CF

题目详情
如图1,△ABC是等边三角形,点E在AC边上,点D是BC边上的一个动点,以DE为边作等边△DEF,连接CF.
(1)当点D与点B重合时,如图2,求证:CE+CF=CD;
(2)当点D运动到如图3的位置时,猜想CE、CF、CD之间的等量关系,并说明理由;
(3)只将条件“点D是BC边上的一个动点”改为“点D是BC延长线上的一个动点”,如图4,猜想CE、CF、CD之间的等量关系为______(不必证明).
▼优质解答
答案和解析
(1)证明:如图2:
∵△ABC与△BEF都为等边三角形,
∴∠ABC=∠EBF=60°,AB=BC=CD,EB=BF,
∴∠ABC-∠EBC=∠EBF-∠EBC,即∠ABE=∠CBF,
在△ABE和△CBF中,
AB=BC
∠ABE=∠CBF
EB=FB

∴△ABE≌△CBF(SAS),
∴AE=CF,
则CD=AC=AE+EC=FC+EC;
(2)CE=CF+CD,理由为:
证明:过D作DG∥AB,交AC于点G,连接CF,

∵DG∥AB,
∴∠CGD=∠CDG=60°,△CDG为等边三角形,
∵△DEF为等边三角形,
∴∠EDF=∠GDC=60°,ED=FD,GD=CD,
∴∠EDF-∠GDF=∠GDC-∠GDF,即∠EDG=∠FDC,
在△EDG和△FDC中,
ED=FD
∠EDG=∠FDC
DG=DC

∴△EDG≌△FDC(SAS),
∴EG=FC,
则CE=CG+EG=CG+CF=CF+CD;
(3)CF=CE+CD,理由为:
证明:过D作DG∥AC,交FC于点G,

∵GD∥AC,
∴∠GCD=∠DGC=60°,即△GCD为等边三角形,
∵△EDF为等边三角形,
∴∠EDF=∠GDC=60°,
∴∠EDF-∠DEG=∠GDC-∠EDG,即∠FDG=∠EDC,
在△ECD和△FGD中,
ED=FD
∠EDC=∠FDG
CD=GD

∴△ECD≌△FGD(SAS),
∴EC=FG,
则FC=FG+GC=EC+CD.
故答案为:(3)CF=CE+CD.