早教吧作业答案频道 -->其他-->
N次方程为什么一定可以分解成N个一次多项式的乘积如a*b=0的形式小处不可随便
题目详情
N次方程为什么一定可以分解成N个一次多项式的乘积如a*b=0的形式
小处不可随便
小处不可随便
▼优质解答
答案和解析
这个是代数基本定理,高斯最早给的证明 我只记得一个在抽象代数书上的证明
证明比较长 思路大概是
1 实系数奇数次方程有实根 (这只要用数学分析中连续函数的介值定理)
2 复系数2次方程有2复根 (配方法就行)
3 实系数方程有复根
证 (粗略的) 次数设为 2^MQ Q为奇数 对M归纳
M=0时 由1 得证
若M>=K时成立
对M=K+1时
G(X)=X^N+A(N-1)X^(N-1).+A0 (N=2^MQ)
为实域R上多项式
则 在某一拓域F上有N个根(用到域的拓张的知识 如果不懂 可以想象 取X1为
一个字 定义他满足上述方程 讲其加到 R上 得R上拓域记为R(X1) 当然这一点是要证明的 不过涉及知识比较多 理解一下就好 然后 原多项式可分解为 (X-X1)G1(X) 接着继续取G1(X)=0的根X2 得R(X1,X2) 一直做下去 可得 在某1拓域上 G(X)=0有N个根 X1,X2.XN)
设为 X1,X2,.XN 则G(X)=(X-X1).(X-XN)
对实数C 有 作X-(XI+XJ+CXIXJ) 对每个N>=I>J>=0
将他们全部相乘 得H(X) 则H(X) 为 N(N+1)/2=2^(M-1)Q(N+1)次注意到 Q(N+1)为奇数
再看H(X) 易知 H(X)中每项系数都为 X1,X2.XN在R上的对称多项式 由
对称多项式基本定理 知 每项系数 都能写成
U1,U2.UN的多项式 其中
U1=X1+X2+...XN
U2=X1X2+X1X3+...X1XN+X2X3...X2XN...+XN-1XN
U3=X1X2X3+X1X2X4...XN-2XN-1XN
.
UN=X1X2...XN
由韦达定理(或者说由(X-X1)(X-X2)...(X-XN)=G(X)展开对比系数)知
U1=-A(N-1)
U2=A(N-2)
.
UN=(-1)^N *A
所以
U1...UN为实数
所以H(X)为实系数多项式 所以由归纳假设知 H(X)=0有复根
所以存在某个 I,J有
XI+XJ+CXIXJ为复数 (注意到 I J 是与C有关的 所以记为I(C) J(C))
因为 (I,J)的数对只有有限多个 但C属于R有无穷多 所以 存在 C1不=C2有
(I(C1),J(C1))=(I(C2),J(C2))记为I J
则 XI+XJ+C1XIXJ=A属于C
XI+XJ+C2XIXJ=B属于C
则 容易解得 XI+XJ=(C2A-C1B)/(C2-C1)属于C
XIXJ=(A-B)/(C1-C2)属于C
则 XI XJ 为 复系数2次方程
X^2- (C2A-C1B)/(C2-C1)X+(A-B)/(C1-C2)=0 的2根
由2知 XI XJ为复数 所以F(X)=0有复根
4 复系数方程有复根
证 设F(X)为复系数多项式 F1(X)为他的共轭 则 G(X)=F(X)F1(X)为实系数多项式 所以 G(X)=0有复根X 则为F(X)=0或F1(X)=0的根 所以
X或X的共轭为F(X)=0的复根
5复系数N次方程有N个复根(计入重根)
(这是明显的 因为由5 知 N次复系数方程F1(X)=0有复根 设为X1则F可分解 有
F1(X)=(X-X1)F2(X) 其中F2为复系数N-1次多项式 所以有复根 X2 则
F1(X)=(X-X1)(X-X2)F3(X) 一直下去得 F(X)=(X-X1)(X-X2).(X-XN)
所以有N个复根
证明比较长 思路大概是
1 实系数奇数次方程有实根 (这只要用数学分析中连续函数的介值定理)
2 复系数2次方程有2复根 (配方法就行)
3 实系数方程有复根
证 (粗略的) 次数设为 2^MQ Q为奇数 对M归纳
M=0时 由1 得证
若M>=K时成立
对M=K+1时
G(X)=X^N+A(N-1)X^(N-1).+A0 (N=2^MQ)
为实域R上多项式
则 在某一拓域F上有N个根(用到域的拓张的知识 如果不懂 可以想象 取X1为
一个字 定义他满足上述方程 讲其加到 R上 得R上拓域记为R(X1) 当然这一点是要证明的 不过涉及知识比较多 理解一下就好 然后 原多项式可分解为 (X-X1)G1(X) 接着继续取G1(X)=0的根X2 得R(X1,X2) 一直做下去 可得 在某1拓域上 G(X)=0有N个根 X1,X2.XN)
设为 X1,X2,.XN 则G(X)=(X-X1).(X-XN)
对实数C 有 作X-(XI+XJ+CXIXJ) 对每个N>=I>J>=0
将他们全部相乘 得H(X) 则H(X) 为 N(N+1)/2=2^(M-1)Q(N+1)次注意到 Q(N+1)为奇数
再看H(X) 易知 H(X)中每项系数都为 X1,X2.XN在R上的对称多项式 由
对称多项式基本定理 知 每项系数 都能写成
U1,U2.UN的多项式 其中
U1=X1+X2+...XN
U2=X1X2+X1X3+...X1XN+X2X3...X2XN...+XN-1XN
U3=X1X2X3+X1X2X4...XN-2XN-1XN
.
UN=X1X2...XN
由韦达定理(或者说由(X-X1)(X-X2)...(X-XN)=G(X)展开对比系数)知
U1=-A(N-1)
U2=A(N-2)
.
UN=(-1)^N *A
所以
U1...UN为实数
所以H(X)为实系数多项式 所以由归纳假设知 H(X)=0有复根
所以存在某个 I,J有
XI+XJ+CXIXJ为复数 (注意到 I J 是与C有关的 所以记为I(C) J(C))
因为 (I,J)的数对只有有限多个 但C属于R有无穷多 所以 存在 C1不=C2有
(I(C1),J(C1))=(I(C2),J(C2))记为I J
则 XI+XJ+C1XIXJ=A属于C
XI+XJ+C2XIXJ=B属于C
则 容易解得 XI+XJ=(C2A-C1B)/(C2-C1)属于C
XIXJ=(A-B)/(C1-C2)属于C
则 XI XJ 为 复系数2次方程
X^2- (C2A-C1B)/(C2-C1)X+(A-B)/(C1-C2)=0 的2根
由2知 XI XJ为复数 所以F(X)=0有复根
4 复系数方程有复根
证 设F(X)为复系数多项式 F1(X)为他的共轭 则 G(X)=F(X)F1(X)为实系数多项式 所以 G(X)=0有复根X 则为F(X)=0或F1(X)=0的根 所以
X或X的共轭为F(X)=0的复根
5复系数N次方程有N个复根(计入重根)
(这是明显的 因为由5 知 N次复系数方程F1(X)=0有复根 设为X1则F可分解 有
F1(X)=(X-X1)F2(X) 其中F2为复系数N-1次多项式 所以有复根 X2 则
F1(X)=(X-X1)(X-X2)F3(X) 一直下去得 F(X)=(X-X1)(X-X2).(X-XN)
所以有N个复根
看了 N次方程为什么一定可以分解成...的网友还看了以下:
英语翻译译文如下:抱歉!我们又接到了一笔新订单,所以请忽略上次的采购合同并且以这次邮件当中的合同为 2020-05-14 …
细胞分裂是每次一分为二还是可以每次一分为好多个? 2020-05-17 …
一道金融数学习题:投资者每月初往基金存入一笔钱款,前2年每次存入1000,后3年每次存入500,5 2020-05-19 …
英语翻译以积货财之心积学问,以求功名之念求道德,以爱妻子之心爱父母,以保爵之策保国家,出次入彼,念 2020-06-28 …
1.出,走,见.三个字为什么是合体字?要解释原因.2.中国有句成语,叫做“众口铄金,积毁销骨.”一 2020-06-29 …
11皮球中有两个次品怎么用三个步骤找出次品可以从它们的重量或者其他方法也行来着手..补充:11个球 2020-07-12 …
有没有一种软件可以每10分钟就报时一次?我要每十分钟刷一次积分,平时的时候就看书,请问有没有一种软 2020-07-14 …
有人制定了一种对两位数的操作规则:对于任意给定的一个两位数,用它的十位数乘个位数,得到一个新的两位 2020-07-30 …
1、若代数式x(x+1)(x+2)(x+3)+p恰好能分解为两个二次整式的乘积(其中二次项系数均为 2020-08-01 …
如图,点A1是面积为3的等边△ABC的两条中线的交点,以BA1为一边,构造等边△BA1C1,称为第一 2020-12-05 …