早教吧作业答案频道 -->数学-->
不等式已经问了3天了若方程f(x)=x²+ax+b=0的两实根均为非整数,试求a,b满足什么条件时,一定存在整数n,使|f(n)|≤0.25成立?a²-16b≤1
题目详情
不等式 已经问了3天了
若方程 f(x)=x²+ax+b=0 的两实根均为非整数,试求a,b满足什么条件时,一定存在整数 n ,使 |f(n)| ≤ 0.25 成立?
a² - 16b ≤ 1
若方程 f(x)=x²+ax+b=0 的两实根均为非整数,试求a,b满足什么条件时,一定存在整数 n ,使 |f(n)| ≤ 0.25 成立?
a² - 16b ≤ 1
▼优质解答
答案和解析
f(x)=x²+ax+b=0 的两实根,则a^2-4b≥0;
|f(n)| ≤ 0.25
|n^2+an+b| ≤ 0.25
-0.25≤n^2+an+b ≤ 0.25
n^2+an+b-0.25 ≤0且n^2+an+b+0.25≥0都有整数解,
1.
n^2+an+b-0.25 ≤0有整数解,则
[-a-√(a^2-4b+1)]/2≤n≤[-a+√(a^2-4b+1)]/2有整数解,
2.
n^2+an+b+0.25≥0有整数解,则
n≥[-a+√(a^2-4b-1)]/2,或n≤[-a-√(a^2-4b-1)]/2有整数解,
所以
[-a+√(a^2-4b-1)]/2≤n≤[-a+√(a^2-4b+1)]/2有整数解,
或[-a-√(a^2-4b+1)]/2≤n≤[-a-√(a^2-4b-1)]/2有整数解,
|f(n)| ≤ 0.25
|n^2+an+b| ≤ 0.25
-0.25≤n^2+an+b ≤ 0.25
n^2+an+b-0.25 ≤0且n^2+an+b+0.25≥0都有整数解,
1.
n^2+an+b-0.25 ≤0有整数解,则
[-a-√(a^2-4b+1)]/2≤n≤[-a+√(a^2-4b+1)]/2有整数解,
2.
n^2+an+b+0.25≥0有整数解,则
n≥[-a+√(a^2-4b-1)]/2,或n≤[-a-√(a^2-4b-1)]/2有整数解,
所以
[-a+√(a^2-4b-1)]/2≤n≤[-a+√(a^2-4b+1)]/2有整数解,
或[-a-√(a^2-4b+1)]/2≤n≤[-a-√(a^2-4b-1)]/2有整数解,
看了 不等式已经问了3天了若方程f...的网友还看了以下:
(1)方程“立方根a-2=(1-根号3-x)的平方”的整数根的个数是多少?(2)已知a的平方-根号 2020-05-13 …
1.若x的平方=ax就是a的平方根,而根号a表示的也是x,你们根号a和a的平方根有什么区别呢?2. 2020-05-14 …
已知函数f(x)=cosx的4次方根减2倍sinxcosx减sinx的4次方根,求f(x)的最小周 2020-05-15 …
三道初二平方根的计算1.求式子x的平方根+x的平方根-1+x的平方根-2的最小值2.若(a的平方根 2020-05-17 …
已知f(x)的定义域为R,且为奇函数,当x∈(0,正无穷)时,f(x)=x(1+x开三次方根),求 2020-06-06 …
acosa+bsina=根号下a方加b方cos(a-f)tanf=a/b还是b/a 2020-07-25 …
设f(x)是定义在R上的奇函数,且当x大于等于0时,f(x)=x(1+x的立方根),求f(x)在R 2020-08-01 …
平方根的问题刚刚学平方根,对那个概念不是很清楚如果一个正数x的平方=a,即x的平方=a,那么这个正 2020-08-02 …
若A=x+y的a+1次方根为x+y的算数平方根,B=xy的2b-1为xy的立方根,求a+b的值A= 2020-08-03 …
下列对应是否是从A到B的函数?①A=R,B={xIx>0},f:x→绝对值x②A=Z,B=N,f: 2020-08-03 …