早教吧 育儿知识 作业答案 考试题库 百科 知识分享

线性代数中,确定基础解系的问题.求正交矩阵时,特征行列式变换为第一行为1其余值为0的三阶行列式,那x1+x2+x3=0,基础解系怎么确定啊?选择两个自由量,是随便选的么?比如我选x2x3分别为10,01,

题目详情
线性代数中,确定基础解系的问题.
求正交矩阵时,特征行列式变换为第一行为1其余值为0的三阶行列式,那x1+x2+x3=0,基础解系怎么确定啊?选择两个自由量,是随便选的么?比如我选x2 x3分别为1 0,0 1,答案取的别的值〜
▼优质解答
答案和解析
因为是求正交矩阵
所以求基础解系时最好直接是正交的
这样x2 x3分别为1,0 得解 (-1,1,0)^T
为了让基础解系正交,x1,x2 分别取1,1 确定出 x3 = -2,即得 (1,1,-2)^T
这样就可避免向量的正交化,只需单位化就可以了
看了 线性代数中,确定基础解系的问...的网友还看了以下: