早教吧作业答案频道 -->数学-->
一个高数的困惑为什么满足方程组F(x,y,z)=0G(x,y,z)=0的所有曲面束为F(x,y,z)+aG(x,y,z)=0,怎么保证它包含了所有满足条件的曲面
题目详情
一个高数的困惑
为什么满足方程组F(x,y,z)=0 G(x,y,z)=0的所有曲面束为F(x,y,z)+aG(x,y,z)=0,怎么保证它包含了所有满足条件的曲面
为什么满足方程组F(x,y,z)=0 G(x,y,z)=0的所有曲面束为F(x,y,z)+aG(x,y,z)=0,怎么保证它包含了所有满足条件的曲面
▼优质解答
答案和解析
你的问法是不是有问题啊,你想知道的可能是下面我说的.
这个方法我给别人解答题目时用的,你可以看下.我是从平面的角度去解释至于曲面就有待研究了.
他的题目是:求过直线 2x-y-2z+1=0与x+y+4z-2=0且在y轴和z轴有相同的非零截距的平面方程
该题的直线是两个平面的交线,所以呢我们可以这样来假定过该直线的所有平面,如:2X-Y-2Z+1+a(X+Y+4Z-2)=0,其中a是一个变量,然后根据截距相等就可求出a,然后化简即可.这是我从复习书上看的方法.如果你知道这方法就不用看我的解释了.(如下)
至于为什么可以这样,我的理解是:你看啊,这条直线肯定是垂直于这两个平面的法线,这两平面的法线分别是这两平面方程XYZ前面的常数,那么我们要求的平面也是过这条直线的,它的法线也是与该直线垂直的,则这三个平面的法线是在一个平面内的(因为都垂直与同一条直线).你要知道,记得不知道是什么时候学的定理,在一平面内,两任意不重合的向量可以表示该平面内任意的其他向量.那么上面的待求平面的法线也是如此,而法线向量又正好是平面方程中XYZ前的系数,因此就把所求平面方程设为含一未知量的形式.
这个方法我给别人解答题目时用的,你可以看下.我是从平面的角度去解释至于曲面就有待研究了.
他的题目是:求过直线 2x-y-2z+1=0与x+y+4z-2=0且在y轴和z轴有相同的非零截距的平面方程
该题的直线是两个平面的交线,所以呢我们可以这样来假定过该直线的所有平面,如:2X-Y-2Z+1+a(X+Y+4Z-2)=0,其中a是一个变量,然后根据截距相等就可求出a,然后化简即可.这是我从复习书上看的方法.如果你知道这方法就不用看我的解释了.(如下)
至于为什么可以这样,我的理解是:你看啊,这条直线肯定是垂直于这两个平面的法线,这两平面的法线分别是这两平面方程XYZ前面的常数,那么我们要求的平面也是过这条直线的,它的法线也是与该直线垂直的,则这三个平面的法线是在一个平面内的(因为都垂直与同一条直线).你要知道,记得不知道是什么时候学的定理,在一平面内,两任意不重合的向量可以表示该平面内任意的其他向量.那么上面的待求平面的法线也是如此,而法线向量又正好是平面方程中XYZ前的系数,因此就把所求平面方程设为含一未知量的形式.
看了 一个高数的困惑为什么满足方程...的网友还看了以下:
(1),设g(x)=1+x,且当x≠0时,f(g(x))=(1-x)/x,求f(1/2)(2),f 2020-04-26 …
已知x/(x^2+x+1)=1/4,求分式x^2/(x^4+x^2+1)的值我查到了2种方法啊貌似 2020-05-12 …
解分式方程:1/X-2+1/X-6=1/X-7+1/X-11/X-2+1/X-6=1/X-7+1/ 2020-05-16 …
1.已知函数f(x)满足f(x)+2f(1/x)=2x-1,求f(x)2.设f(x)是定义在R上的 2020-05-23 …
用[x]表示不超过x的最大整数,记{x}=x-[x],其中x∈R,设f(x)=[x]•{x}.用[ 2020-06-04 …
设f(x)在x=a处连续,φ(x)在x=a处间断,又f(a)≠0,则()A.φ[f(x)]在x=a 2020-06-12 …
1.7/x²-1+8/x²-2x=37-9x/x^3-x²-x+12.3/x²+x-2=x/x-1 2020-07-18 …
,关于集合的..设集合M={x|m-4/5≤x≤m},N={x|n≤x≤n+1/4},且M,N都是 2020-07-29 …
,关于集合的..设集合M={x|m-4/5≤x≤m},N={x|n≤x≤n+1/4},且M,N都是 2020-07-29 …
1+x+x(x+1)+x(x+1)^2=(1+x)[1+x+x(x+1)]=(1+x)^2(1+x 2020-08-03 …