早教吧作业答案频道 -->其他-->
∫(lnx-1)dx/x^2∫(下限0,上限π/2)cosxdx/(cosx+sinx)
题目详情
∫(lnx-1)dx/x^2
∫(下限0,上限π/2)cosxdx/(cosx+sinx)
∫(下限0,上限π/2)cosxdx/(cosx+sinx)
▼优质解答
答案和解析
∫(lnx-1)dx/x^2
=∫(lnx-1)d(-1/x) (分部积分)
=(-1/x)(lnx-1)-∫(-1/x)d(lnx-1)
=(1-lnx)/x+∫1/x^2dx
=-lnx/x+C
记M=∫(下限0,上限π/2)cosxdx/(cosx+sinx)
N=∫(下限0,上限π/2)sinxdx/(cosx+sinx)
则M+N=∫(下限0,上限π/2)(cosx+sinx)dx/(cosx+sinx)
=∫(下限0,上限π/2) 1dx=π/2
M-N=∫(下限0,上限π/2)(cosx-sinx)dx/(cosx+sinx)
=∫(下限0,上限π/2) d(sinx+cosx)/(cosx+sinx)
=ln|sinx+cosx|(π/2)-ln|sinx+cosx|(0)
=0
所以M+N=π/2,M-N=0,M=N=π/4
=∫(lnx-1)d(-1/x) (分部积分)
=(-1/x)(lnx-1)-∫(-1/x)d(lnx-1)
=(1-lnx)/x+∫1/x^2dx
=-lnx/x+C
记M=∫(下限0,上限π/2)cosxdx/(cosx+sinx)
N=∫(下限0,上限π/2)sinxdx/(cosx+sinx)
则M+N=∫(下限0,上限π/2)(cosx+sinx)dx/(cosx+sinx)
=∫(下限0,上限π/2) 1dx=π/2
M-N=∫(下限0,上限π/2)(cosx-sinx)dx/(cosx+sinx)
=∫(下限0,上限π/2) d(sinx+cosx)/(cosx+sinx)
=ln|sinx+cosx|(π/2)-ln|sinx+cosx|(0)
=0
所以M+N=π/2,M-N=0,M=N=π/4
看了 ∫(lnx-1)dx/x^2...的网友还看了以下:
设f(sinx)=(cosx)^2+sinx+5,求f(x) 2020-05-15 …
lim[(1-cosx)^1/2]/sinx,x趋于0,求极限 2020-05-16 …
解微分方程 dy+(y-(y^2)*cosx+(y^2)*sinx)dx=0 2020-05-17 …
设向量A=(COSX/2,SINX/2),向量B=(SIN3X/2,COS3X/2),设函数F(X 2020-05-22 …
=2√2*[(1/2)*cosx-(√3/2)sinx]=2√2[cosx*cos(π/3)-si 2020-06-02 …
当x趋近于无穷大时,求下列函数极限★(sinx+cosx)/x★(2^n+1+3^n+1当x趋近于 2020-06-02 …
f(sinx)=(cosx)∧2+sinx+5,求f(x) 2020-06-27 …
已知向量a=(cos3x/2,sin3x/2),b=(cosx/2,-sinx/2),且x属于[0. 2020-11-02 …
1.y=(sinx/4)^4+(cosx/4)^4y'=4(sinx/4)^3{(1/4)cosx/ 2020-11-07 …
一个求极限的问题.求X趋近于0时,(XcosX-sinX)/X^3的值这里有两个解法.①.直接用洛必 2020-12-21 …