早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设ω是一个平面图形,如果用直尺和圆规经过有限步作图(简称尺规作图),画出一个正方形与ω的面积相等(简称等积),那么这样的等积转化称为ω的“化方”.(1)阅读填空如图①,已

题目详情
设ω是一个平面图形,如果用直尺和圆规经过有限步作图(简称尺规作图),画出一个正方形与ω的面积相等(简称等积),那么这样的等积转化称为ω的“化方”.
(1)阅读填空
如图①,已知矩形ABCD,延长AD到E,使DE=DC,以AE为直径作半圆.延长CD交半圆于点H,以DH为边作正方形DFGH,则正方形DFGH与矩形ABCD等积.
理由:连接AH,EH.
∵AE为直径,∴∠AHE=90°,∴∠HAE+∠HEA=90°.
∵DH⊥AE,∴∠ADH=∠EDH=90°
∴∠HAD+∠AHD=90°
∴∠AHD=∠HED,∴△ADH∽___.
AD
DH
=
DH
DE
,即DH2=AD×DE.
又∵DE=DC
∴DH2=___,即正方形DFGH与矩形ABCD等积.
(2)操作实践
平行四边形的“化方”思路是,先把平行四边形转化为等积的矩形,再把矩形转化为等积的正方形.
如图②,请用尺规作图作出与▱ABCD等积的矩形(不要求写具体作法,保留作图痕迹).
(3)解决问题
三角形的“化方”思路是:先把三角形转化为等积的___(填写图形名称),再转化为等积的正方形.
如图③,△ABC的顶点在正方形网格的格点上,请作出与△ABC等积的正方形的一条边(不要求写具体作法,保留作图痕迹,不通过计算△ABC面积作图).
(4)拓展探究
n边形(n>3)的“化方”思路之一是:把n边形转化为等积的n-1边形,…,直至转化为等积的三角形,从而可以化方.
如图④,四边形ABCD的顶点在正方形网格的格点上,请作出与四边形ABCD等积的三角形(不要求写具体作法,保留作图痕迹,不通过计算四边形ABCD面积作图).
作业帮
▼优质解答
答案和解析
(1)如图①,连接AH,EH,作业帮
∵AE为直径,
∴∠AHE=90°,
∴∠HAE+∠HEA=90°.
∵DH⊥AE,
∴∠ADH=∠EDH=90°,
∴∠HAD+∠AHD=90°,
∴∠AHD=∠HED,
∴△ADH∽△HDE.
AD
DH
=
DH
DE

即DH2=AD×DE.
又∵DE=DC,
∴DH2=AD×DC,
即正方形DFGH与矩形ABCD等积.

(2)作法:
①过A、D作AN、DM分别垂直BC于N、M;作业帮
②延长AD,取DE=DM;
③以AE为直径作半圆O;
④延长MD交半圆O于H;
⑤以H、D作正方形HDFG,则正方形HDFG为平行四边形ABCD的等积正方形.
证明:
∵矩形ADMN的长和宽分别等于平行四边形ABCD的底和高,
∴矩形ADMN的面积等于平行四边形ABCD的面积,
∵AE为直径,
∴∠AHE=90°,
∴∠HAE+∠HEA=90°.
∵DH⊥AE,
∴∠ADH=∠EDH=90°,
∴∠HAD+∠AHD=90°,
∴∠AHD=∠HED,
∴△ADH∽△HDE.
AD
DH
=
DH
DE

即DH2=AD×DE.
又∵DE=DM,
∴DH2=AD×DM,
即正方形DFGH与矩形ABMN等积,
∴正方形DFGH与平行四边形ABCD等积.
作业帮
(3)作法:
①过A点作AD垂直BC于D;
②作AD的垂直平分线,取AD中点E;
③过E作BC平行线,作长方形BCGF,则S矩形BCGF=S△ABC
其他步骤同(2)可作出其等积正方形.


(4)作法:作业帮
①过A点作BD平行线l;
②延长CD交平行线与E点;
③连接BE,则S四边形ABCD=S△EBC
同(3)可作出其等积正方形.

△BCE与四边形ABCD等积,理由如下:
∵BD∥l,
∴S△ABD=S△EBD
∴S△BCE=S四边形ABCD
即△EBC与四边形ABCD等积.
故答案为:△HDE、AD×DC、矩形.
看了 设ω是一个平面图形,如果用直...的网友还看了以下: